日本語

New Method - Observing how materials emit polarized light

588
2025-07-04 10:46:38
翻訳を見る

Many materials emit light in ways that encode information in its polarization. According to researchers at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, polarization is key for future technologies, from quantum computers to secure communication and holographic displays.
Among such phenomena is a form known as circularly polarized luminescence (CPL), a special type of light emission produced by chiral materials, in which light waves spiral either left or right as they travel.

 



Standard CPL techniques are often slow, narrowly focused, or unable to pick up faint signals, says EPFL, especially when studying advanced materials with fleeting or subtle polarization effects. These limitations have slowed the quest to fully understand how chiral materials interact with light.

Now, a team led by Professor Sascha Feldmann at EPFL’s Laboratory for Energy Materials has developed a high-sensitivity, broadband, time-resolved spectroscopy technique that captures the complete set of polarization states (the so-called "Stokes vector"). The work, including shared blueprints, is described in Nature.

Wide window

The new technique does this across a wide spectral window (400–900 nm), and at time intervals ranging from just nanoseconds up to several milliseconds, all with a noise floor as low as one ten-thousandth the intensity of the polarized light being emitted by a material. The new technique also captures linear and circular polarization signals at the same time, which helps identify and correct for polarization artifacts that often disrupt other methods.

The EPFL team says it designed the instrument “with straightforward, off-the-shelf components, making it widely adoptable.” They are sharing the full optical schematics and a compendium of “non-obvious” error sources to open the field up for others.
They used an electronically-gated camera and polarization optics to record the full Stokes vector in real time, tracking changes in light emission from different types of molecules that feature both strong and weak polarized luminescence. By recording the complete polarization fingerprint, the new set up can uncover details that other approaches miss, says EPFL.

 



The new approach successfully captured polarization changes in materials that had never been tracked in such detail before. It reproduced benchmark results for well-studied molecules, and it revealed previously unseen dynamics in organic emitters and complex systems where light emission happens on both fast and slow timescales.

With its combination of high sensitivity, wide spectral coverage, and nanosecond time resolution, the technique is said to open an unprecedented window onto the realm of excited-state polarization dynamics and symmetry-breaking. The team has also made their blueprints and automation algorithms public in an effort to democratize the field and help speed up discoveries worldwide.

Source: optics.org

関連のおすすめ
  • Coherent lasers will help expand the scale of fusion tokamaks

    Coherent company's excimer lasers can be more widely used in fusion reactor applications, after the US based photonics giant signed a "letter of intent" with Japan's Faraday 1867 Holdings.Faraday 1867, headquartered in Kanagawa Prefecture, is said to have become the world's leading manufacturer of high-temperature superconducting (HTS) tape through its subsidiary Faraday Japan factory.This tape is...

    2023-10-11
    翻訳を見る
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    翻訳を見る
  • MIT researchers have demonstrated a novel chip based resin 3D printer

    Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.The prototype processor does not have mobile components, but ...

    2024-06-17
    翻訳を見る
  • Leica Cine 1 laser TV with 4K display screen launched with a starting price of $8995

    Photography brand Leica has launched its first 4K movie and television. The Leica Cine 1 laser TV was announced a year later during the I FA 2022 period. This iconic photography brand is shifting some of its focus to projecting perfect images in our living room.featureThe Leica Cine 1 laser TV embodies Leica's philosophy in its camera design. Leica continues to provide precision optical engineerin...

    2023-10-19
    翻訳を見る
  • Edmund Optics acquisition son-x

    Recently, globally renowned optical component manufacturer Edmund Optics announced that the company has acquired ultrasonic assisted systems and high-precision optical manufacturer son-x.Edmund Optics, as a leader in optical technology solutions, has been serving various fields such as life sciences, biomedicine, industrial testing, semiconductors, and laser processing since its establishment in 1...

    01-22
    翻訳を見る