日本語

Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

1002
2023-09-07 14:05:17
翻訳を見る

Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation in monolayer MoS2".

High order harmonic radiation in solid materials is an important spectroscopy technique to detect the fundamental properties of matter, and has been successfully used to reconstruct crystal band structure, detect Berry curvature and detect topological phase transitions. In recent years, two-dimensional layered materials have received extensive attention, which brings new opportunities for further research on the generation of higher harmonics.

Since the thickness of the material is only a single or a few atomic layers, its spatial scale is much smaller than the wavelength of the driving laser, which can effectively avoid the influence of nonlinear transmission, and thus become an ideal material for studying the ultrafast-fast dynamics of laser field. Among them, monolayer molybdenum disulfide (MoS2) has attracted much attention due to its non-centrosymmetric structure and significant nonlinearity.

This research team [Opt.Express 29,4830 (2021)] observed an abnormal enhancement of even harmonics in the HHG spectrum of MoS2 and attributed this to spectral interference during different half-weeks of Berry contact control. In addition, quantum trajectory analysis suggests that the transition dipole moment phase and Berry linkage modulate the energy and momentum of the released photon, but no experimental observations have confirmed this so far.

The research team used the mid-infrared laser light source built by the laboratory to excite single-layer MoS2 to generate higher-order harmonic spectrum. It was found that when the laser polarization was driven along the armrest direction, the center frequency of even harmonics would shift significantly, and the harmonic energy of the frequency shift was close to the band gap energy of single-layer MoS2.

In addition, it is found that the frequency shift of even harmonics of adjacent order is opposite, that is, the 6th harmonic is red shifted, while the 8th harmonic is blue shifted. Based on the semiconductor Bloch equation and the saddle point calculation of electron orbit, the research team successfully revealed the microphysical mechanism of frequency shift, and confirmed that the frequency shift phenomenon of even harmonic is mainly from the interband polarization process.

The theoretical analysis further shows that the transition dipole moment phase and the Bailie connection jointly modulate the moment and momentum of the electron-hole pair recombination, resulting in a change in the frequency of the photon released by the adjacent half-period, which then changes the center frequency of different harmonic levels, and finally causes six redshifts and eight blue shifts of MoS2 spectrum. This work reveals that the transition dipole moment phase and Berry connection play an important role in the high-field optical response of non-centrosymmetric materials, and contributes to the fundamental understanding of ultrafine carrier dynamics in non-centrosymmetric materials.

Figure 1. The simulated higher-order harmonic spectra reproduce the experimental observations.

Figure 2. (a) the frequency shift of different levels of the spectrum between bands, and (b) the dependence of the harmonic frequency shift on the crystal azimuth.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

関連のおすすめ
  • The Innovation Road of Laser Welding Automation Production Line for New Energy Vehicle Motor stators

    With the increasing global attention to environmental protection and sustainability, new energy vehicles have become an important trend in the automotive industry. In this context, the production method of the core component of new energy vehicles - the motor stator - has also undergone profound changes. Welding, as a key manufacturing process, has brought disruptive innovation to the manufacturin...

    2024-02-28
    翻訳を見る
  • Siemens will provide Rolls Royce with aerospace additive manufacturing components

    Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.Rolls Royce and 3D Printing TechnologyRoll...

    2024-12-13
    翻訳を見る
  • Van's updates the manufacturer of laser-cut parts

    Van's Aircraft has responded to reports of ruptured dented parts found in AirVenture's latest kit. These defects are caused by external suppliers changing the process of laser cutting parts. From February 2022 to June 2023, Van's moved some parts from traditional punch manufacturing to an outside supplier that can laser cut rivet holes. The move is designed to increase the company's throughput and...

    2023-08-04
    翻訳を見る
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    翻訳を見る
  • Researchers have developed a QCL DFB continuous laser for gas detection

    Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.In 2004, the first commercial laser was introduced.Principle: In a single mode laser, the grating is etched into the active region to force the ...

    2023-08-16
    翻訳を見る