日本語

The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

866
2023-09-04 17:32:54
翻訳を見る

High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.

Especially fiber laser due to stable and reliable operation characteristics, compact structure, excellent beam quality, low cost and other advantages. It has received much attention from people and is also a popular laser product with an average output power of up to 100W. 

However, due to the harmful nonlinear effects in the fiber, the single pulse energy generated by a single fiber is difficult to break through the bottleneck of the millisjiao while ensuring the pulse quality and beam quality in the time domain, which limits many important applications that require laser intensity.

The coherent synthesis technique is a feasible method to obtain femtosecond pulses with high average power and millifocal order by combining the multi-channel amplified femtosecond pulses together. There are two kinds of coherent components: active coherent synthesis and passive coherent synthesis. 

The power and energy of active coherent synthesis can be increased with the increase of the number of synthesis paths, but complex and expensive electronic control locking system is needed. However, passive synthesis does not need an electronic phase stabilizer, and the device is relatively simple, but limited by the number of synthesis paths, the synthetic average power and single pulse energy are low.

In view of the above problems and difficulties, the L07 group of the Institute of Physics of the Chinese Academy of Sciences/Beijing National Research Center of Condensed Matter Physics, based on years of research on high-power ultrafast fiber lasers, proposed that Static Mode Degradation (SMD) in fibers is a key bottleneck to limit the average power of passive coherent synthesis schemes. 

Based on this, a bidirectional isolator that can effectively inhibit SMD has been invented. After achieving an average power of 100W in 2021 (Opt.Lett. 46, 3115 (2021)), recently based on a passive synthetic ytterbium-doped ultrafast fiber laser system, not only further obtained the results of a maximum average power of 200 W. At the repetition rate of 100 kHz, the single pulse energy reaches 1.07 mJ, and the synthesis efficiency of the system exceeds 85%. the results are published in the latest issue of the Journal of the Optical Society of America B. The first author of the paper is Shi Zhuo, a doctoral student supervised by Chang Guoqing Special Researcher.

Figure 1. Experimental device diagram

As shown in FIG. 1, the polarized laser pulse provided by the front end with an energy of 0.80μJ and an adjustable repetition frequency between 100kHz and 1MHz is widened, reflected by PBS1 and transmitted by PBS2. After the time splitting device consisting of PBS3 and PBS4 is divided into two small pulses with an interval of about 2ns, the beam splitting device is divided into two small pulses. Further amplification by PBS5 is divided into four pulses into the Sagnac loop. 

Two of the pulses are transmitted in a clockwise direction and the other two are transmitted in a counterclockwise direction and are circularly polarized using quarter wave plates (QWP1 and QWP2) before entering the bar fiber. A polarizing beam splitter PBS6 is inserted between the two gain fibers to polarize the pulses, and the light in both directions is transferred for a circle at PBS5, and the pair-wise synthesis is performed. Some of the depolarized light leaks out from the synthesis, forming a depolarization port.

 Most of the light is returned from the original path, and becomes a pulse through the time domain coincidence at the time division pulse device. Some of the unsynthesized light is not output at the synthesized port, and the synthesized light is output from the synthesized port. The experimental results show that the average power of the synthesized port reaches 160W at a repetition frequency of 150kHz. 

When the repetition rate is reduced to 100kHz, the single pulse energy after pulse compression is 1.07mJ, and no obvious SMD phenomenon is observed during the amplification process. Figure 2 shows the main measurement results at this energy. The display pulse width is 240fs, spectral width is 8.7nm, the corresponding RMS within 3 hours is less than 0.5%, the beam quality M2 factor is 1.11×1.27, and the longitudinal beam distortion is mainly from the grating pair.

Figure 2. Results of (a) autocorrelation curve, (b) spectral distribution, (c) power stability and (d) beam quality at 1.07 mJ

Compared with previous high-power ytterbium-doped fiber femtosecond laser sources based on single amplification or active synthesis, this study uses a passive synthesis method with simple structure, and obtains results greater than 1mJ, breaking through the bottleneck of conventional femtosecond fiber laser monopulse energy, and has an average power output capacity of up to 200W, excellent beam quality and stability. 

It is expected to play an important role in the generation of high repetition frequency attosecond high harmonics, precision machining and cutting of special materials, semiconductor chip defect detection and biomedical imaging. The devices and core devices related to this progress have applied for national invention patents.

Source: Sohu

関連のおすすめ
  • Ring Laser Accuracy: Unprecedented Daily Measurement and Mapping of Earth's Rotation

    Scientists at the Technical University of Munich have made significant progress in measuring the Earth's rotation with unprecedented accuracy. Now, the ring laser from the Wettzell Geodetic Observatory can be used to capture data at a quality level unmatched anywhere in the world. These measurements are crucial for determining the position of the Earth in space, assisting climate research, and imp...

    2023-11-14
    翻訳を見る
  • Han's Laser wins multiple lithium battery projects

    Recently, relevant information shows that Shenzhen Han's Lithium Battery Intelligent Equipment Co., Ltd. (referred to as Han's Lithium Battery) has won the bid for the solid-state battery pilot line testing section process equipment project and solid-state battery pilot line assembly section process equipment project of Dongfeng Hongtai Holdings Group Co., Ltd. The winning bid amounts are 9.3847 m...

    2024-09-28
    翻訳を見る
  • Received NASA contract! Breakthrough blue light laser technology leads the space power revolution

    On May 6th, NUBURU, a leading enterprise in high-power and high brightness industrial blue laser technology, announced that the company has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to promote blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lun...

    2024-05-08
    翻訳を見る
  • Fraunhofer ISE develops a faster laser system for wafer processing

    By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform lase...

    2023-12-23
    翻訳を見る
  • Short pulse lasers in the form of chips use the so-called mode coupling principle

    Nowadays, lasers that emit extremely short flashes can be found in many research laboratories, but they usually fill the entire room. Physicists have now successfully reduced this laser to the size of a computer chip. As they reported in the journal Science, their research can lay the foundation for extremely compact detectors.A team led by Qiushi Guo from the California Institute of Technology in...

    2023-11-10
    翻訳を見る