日本語

Laser printing on fallen leaves can produce sensors for medical and laboratory use

556
2024-05-16 17:18:22
翻訳を見る

The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The team is led by Bruno Janegitz, Professor and Head of Sensors, Nanopharmaceuticals and Nanostructured Materials Laboratory (LSNANO) at the Federal University of San Carlos (UFSCar), and Thiago Paix ã o, Professor and Head of Electronic Tongue and Chemical Sensor Laboratory (L2ESQ) at the University of S ã o Paulo (USP). This initiative has received support from FAPESP and was emphasized in an article published in the journal ACS Sustainable Chemistry and Engineering.

Janegitz said, "We used CO2 (carbon dioxide) lasers to print designs of interest on leaves through pyrolysis and carbonization. Therefore, we obtained an electrochemical sensor for measuring levels of dopamine and paracetamol. It is very easy to operate. A drop of solution containing one of the compounds is placed on the sensor, and a potentiostat connected to it displays the concentration."

Simply put, the laser beam burns the leaves during the pyrolysis process, converting their cellulose into graphite, which is printed on the leaves in a shape suitable for use as a sensor. During the manufacturing process, the parameters of the CO2 laser, including laser power, pyrolysis scanning rate, and scanning gap, are systematically adjusted to obtain the best results.

Janegitz said, "These sensors have been characterized through morphology and physicochemical methods, allowing for a detailed exploration of the new carbonized surfaces generated on the leaves."

"In addition, the applicability of the sensor was confirmed through testing dopamine and paracetamol in biological and drug samples. For dopamine, the system is effective in the linear range of 10-1200 micromoles per liter, with a detection limit of 1.1 micromoles per liter. For paracetamol, the system has a linear range of 5-100 micromoles per liter, with a detection limit of 0.76."

In tests involving dopamine and paracetamol, as a proof of concept, the electrochemical sensor extracted from fallen leaves achieved satisfactory analytical performance and noteworthy reproducibility, highlighting its potential as a substitute for traditional substrates.

Replacing traditional materials with fallen leaves has produced significant benefits in reducing costs and, most importantly, environmental sustainability. Janegitz said, "These leaves would have been incinerated or at best composted. Instead, they are being used as substrates for high-value devices, which is a significant advancement in the manufacturing of next-generation electrochemical sensors."

Source: Laser Net

関連のおすすめ
  • Application of Airborne Lidar Calibration Board in Various Fields

    With the rapid development of technology, airborne LiDAR technology has become one of the key technologies in modern surveying, remote sensing, navigation and other fields. As an important component of this technology, the airborne LiDAR calibration board plays a crucial role in ensuring the accuracy and stability of the radar system. This article will explore the application and importance of air...

    2024-04-08
    翻訳を見る
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    翻訳を見る
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    翻訳を見る
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    翻訳を見る
  • New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the dam...

    2024-07-08
    翻訳を見る