日本語

Laser blasting promises to solve global plastic problem

424
2024-07-16 14:30:55
翻訳を見る

Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.

This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.

This discovery has the potential to improve the way we handle plastics that are currently difficult to decompose. The relevant research results have been published in the journal Nature Communications.

By utilizing these unique reactions, we can explore new ways to convert environmental pollutants into valuable reusable chemicals, thereby promoting the development of a more sustainable and circular economy, "said Yuebing Zheng, a professor in the Walker Department of Mechanical Engineering at the Cockrell School of Engineering at the University of Texas at Austin and one of the project leaders." This discovery is of great significance for addressing environmental challenges and advancing the field of green chemistry.

Plastic pollution has become a global environmental crisis, with millions of tons of plastic waste accumulating in landfills and oceans every year. Traditional plastic degradation methods often have high energy consumption, are harmful to the environment, and have poor results. Researchers envision using this new discovery to develop efficient plastic recycling technologies to reduce pollution.

Researchers use low-power light to break the chemical bonds of plastics and create new chemical bonds, transforming the material into luminescent carbon dots. Due to the diverse capabilities of carbon based nanomaterials, there is a high demand for these carbon dots, which may be used as storage devices in the next generation of computer equipment.

Transforming plastics that can never be degraded into materials useful for many different industries is exciting, "said Jingang Li, a postdoctoral student at the University of California, Berkeley who started this research at the University of Texas at Austin.

The specific reaction he mentioned is called "C-H activation", which selectively breaks the carbon hydrogen bonds in organic molecules and converts them into new chemical bonds. In this study, two-dimensional materials catalyzed this reaction, turning hydrogen molecules into gas and allowing carbon molecules to combine with each other to form carbon dots for storing information.

Further research and development are needed to optimize this photo driven C-H activation process and scale it up for industrial applications. However, this study represents significant progress in finding sustainable solutions for plastic waste management.

The photo driven C-H activation process demonstrated in this study can be applied to many long-chain organic compounds, including polyethylene and surfactants commonly used in nanomaterial systems.

Other co authors come from the University of Texas at Austin, Northeastern University in Japan, University of California, Berkeley, Lawrence Berkeley National Laboratory, Baylor University, and Pennsylvania State University.

This work has received funding from the National Institutes of Health, National Science Foundation, Japan Association for the Advancement of Science, Hirose Foundation, and National Natural Science Foundation of China.

Source: OFweek

関連のおすすめ
  • Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

    Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related rese...

    2024-07-12
    翻訳を見る
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    翻訳を見る
  • Japan and Germany jointly develop ultra high speed laser material deposition technology

    Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes o...

    2024-10-25
    翻訳を見る
  • Tower and Fortsense have announced the launch of their highly advanced 3D imager for LiDAR

    Recently, Gaota Semiconductor announced the successful development of an advanced 3D imager based on dToF technology for LiDAR applications. The newly developed product FL6031 is based on Tower's 65nm Stacked BSI CIS platform and has pixel level hybrid bonding function. It is the first in a series of products aimed at meeting the needs of numerous deep sensing applications in the automotive, consu...

    2023-09-14
    翻訳を見る
  • Snapmaker Announces Its First Dedicated Laser Cutter, the Ray, in 20w and 40w Flavors

    Snapmaker has been making three-in-one manufacturing tools -- The Snapmaker, Snapmaker 2 and Artisan -- for over six years now. These machines have changeable tool heads that can be used for 3D printing, laser cutting and CNC machining. At the beginning of this year, it branched out to make adedicated 3D printer, the J1-- a dual print-head machine that works very well -- and today the ...

    2023-08-28
    翻訳を見る