日本語

Laser Uranium Enrichment Company (GLE) accelerates development

893
2024-06-22 10:16:22
翻訳を見る

Paducah, located in western Kentucky, may become the location of the world's first commercial facility to adopt this technology.
Since 2016, Global Laser Enrichment Company (GLE) has partnered with the US Department of Energy to use its unique molecular process to concentrate 200000 tons of depleted uranium "tails" stored at the former Padiuka gas diffusion plant in western Kentucky.

After years of research and testing, GLE has successfully pushed third-generation nuclear technology to the forefront of commercialization. This enterprise was originally jointly owned by General Electric and Hitachi, and now is 51% owned by Australian nuclear technology pioneer Silex, while Canadian nuclear fuel supplier Cameco holds the remaining 49%.

Recently, GLE signed an important agreement with the local government to obtain the option to acquire the land near the former PGDP (Padiuka Gas Diffusion Plant). This factory, which has been in use for national defense since 1952, began producing fuel grade uranium for nuclear reactors in 1964 and ceased operations in 2013.

At the same time, the Padiuka McCracken County Industrial Development Bureau has reached a transfer agreement for a piece of land located in Fulton County and Hickman County along the Mississippi River. Once GLE exercises its option, the land will be transferred to KFW.

Bruce Wilcox, President and CEO of Greater Paduah Economic Development, revealed that the option will expire in December 2024, but GLE expects its Test Loop pilot facility in Wilmington, North Carolina to complete a technical demonstration before that.

McLarken County Commissioner Eddie Jones, as the chairman of the Padiuka Community Reuse Organization, welcomes this and sees it as an "exciting development". He emphasized that Padiyuka's nuclear history may be key to its economic revival.

Regarding the core technology of GLE, Patrick White, the research director of the Nuclear Innovation Alliance, pointed out that the principle of laser uranium enrichment is to selectively excite uranium-235 molecules using lasers and separate them from uranium-238 molecules through physical methods. Compared to traditional gas diffusion or centrifuge technology, laser concentration has higher energy efficiency and smaller footprint.

However, some scientists and securities experts have expressed concerns about the global nuclear proliferation potential of Silex technology. In this regard, White believes that as long as appropriate control measures are implemented to ensure that technology is used responsibly, its existence "may not necessarily be a big problem".

Nima Ashkeboussi, Vice President of Government Relations and Communication at GLE, revealed in an interview that the construction cost of the facility is expected to exceed $1 billion. US President Biden approved a spending bill worth $2.7 billion in March this year to build an advanced nuclear fuel supply chain, and Ashkeboussi expects GLE to receive some funding support from it to achieve its ambitious goals.

Source: OFweek

関連のおすすめ
  • The femtosecond laser was used to manufacture a magnetically responsive "Janus Origami" robot, which realized the effective integration of various droplet manipulation functions

    Recently, the reporter learned from the University of Science and Technology of China that Professor Hu Yanlei's team and his collaborators in the micro-nano Engineering Laboratory of the School of Engineering Science and Technology of the School have prepared a magnetic-responsive double-God origami robot that can be used for cross-scale droplet manipulation using femtosecond laser micro-nano man...

    2023-09-12
    翻訳を見る
  • Chinese researchers have developed for the first time a room temperature HoYLF thin film laser

    In a study published in Optics Express, the research team led by Professor Fu Yuxi of the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed the room temperature holmium doped lithium yttrium fluoride (Ho: YLF) composite thin slice laser for the first time, which can achieve high efficiency and high-quality CW laser output.Laser devices operating...

    02-21
    翻訳を見る
  • Particles have "fuzzy memory" in solid-state batteries

    When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.This discovery has improved the understanding of solid-state batteries, which are candidate...

    2024-02-18
    翻訳を見る
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    翻訳を見る
  • The market accounts for up to 70%! Meere is continuously expanding its market layout

    According to Korean media reports, Meere, a semiconductor and display equipment manufacturer from South Korea, is continuously expanding its presence in the high stack semiconductor market, including its HBM business.In fact, Meere itself is the world's top manufacturer of display edge grinding mechanisms, with a market share of up to 70%. It is based on its accumulation of display microfabricatio...

    2024-06-25
    翻訳を見る