日本語

New insights into the interaction between femtosecond laser and living tissue

724
2024-06-07 14:10:38
翻訳を見る

The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.

To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photoscience (MPL), as well as Max Planck Zentrum f ü r Physik und Medizin, collaborated to determine the conditions under which strong pulsed lasers can be used in the body without damaging the organism.

The international team based in Erlangen used vertebrate zebrafish to investigate the mechanism of deep tissue light damage triggered by femtosecond excitation pulses at the cellular level. The research results have been published in the Journal of Communication Physics.

The first author of this publication, Dr. Soyeon Jun from the MPL "Femtosecond Field Mirror" group led by Fattahi, explained, "We have demonstrated that when the central nervous system (CNS) of zebrafish is irradiated with 1030 nm femtosecond pulses, it suddenly occurs at the extreme peak intensity required for low-density plasma formation.".

As long as the peak intensity is below the low plasma density threshold, this allows for non-invasive increase in imaging residence time and photon flux during 1030 nm irradiation. This is crucial for nonlinear unlabeled microscopes.

"These findings have greatly promoted the advancement of deep tissue imaging technology and innovative microscopy techniques, such as femtosecond field microscopy, which is currently being developed in my group. This technology can capture high spatial resolution, unlabeled images with attosecond time resolution," Fattahi said.

"Our research findings not only highlight the value of collaboration in the fields of physics and biology, but also pave the way for in vivo applications to achieve precise manipulation of the central nervous system based on light," added Wehner, head of the Neuroregeneration Research Group.

Source: Laser Net

関連のおすすめ
  • 253 million US dollars! This Canadian medical fiber optic sensor manufacturer will be acquired

    Recently, Haemantics Corporation, which focuses on providing innovative medical solutions with proprietary optical technology, announced that the company has reached a final agreement. According to the agreement, Haemonics will acquire all outstanding shares of Canadian fiber optic sensor manufacturer OpSens for CAD 2.90 per share.This is an all cash transaction with a fully diluted equity value o...

    2023-10-18
    翻訳を見る
  • Scientists plan to build particle accelerator to power giant chip factory

    Scientists are exploring new ways to get around limitations on the lithography machines used to produce microchips. Researchers are using particle accelerators to create new laser sources that could lay the foundation for the future of semiconductor manufacturing.Plans are underway to build a particle accelerator with a circumference between 100 and 150 meters (328 and 492 feet), about the size of...

    2023-09-25
    翻訳を見る
  • Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

    Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional ma...

    2024-02-23
    翻訳を見る
  • The University of Stuttgart has simplified the detection of nanoplastics

    Detecting the presence of nanoscale plastic particles in the environment has become a topic of concern for industrial societies worldwide, not least since particles of that size can evade the body's blood-brain barrier and damage metabolic processes.Optical technologies have been at the forefront of these monitoring efforts. Recent examples have included the use of stimulated Raman scattering to s...

    1日前
    翻訳を見る
  • A German research team has developed a new type of perovskite stacked battery

    According to relevant media reports, a research team from the Helmholtz Center in Berlin, Germany, and Humboldt University has jointly developed a new type of perovskite stacked battery. This battery has broken the world record for similar batteries with a photoelectric conversion efficiency of 24.6%. In the solar cell family, in addition to silicon-based solar cells, there are also thin-film so...

    02-08
    翻訳を見る