日本語

NASA will demonstrate laser communications on the space station to improve space communications capabilities

930
2023-09-04 17:12:37
翻訳を見る

Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023. 

ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together complete NASA's first two-way end-to-end laser relay system.

(Photo credit: NASA)

Advantages of laser communication systems

Laser communication systems use invisible infrared light to send and receive information at higher data transfer rates. It took about nine weeks for the original radio frequency system to transmit a complete map of Mars back to Earth, while it took about nine days using lasers. As a result, with higher data transfer rates, missions can send more images and videos to Earth in a single transmission. 

Once installed on the space station, ILLUMA-T will demonstrate the benefits of higher data transfer rates for low-Earth orbit missions. Laser communications provide greater flexibility for missions, as well as a quick way to get data from space. NASA is currently integrating this technology in near-Earth, lunar and deep space demonstrations.

In addition to the advantages of faster data transmission rates, laser systems also have key advantages in spacecraft design due to their lighter weight and lower energy consumption. ILLUMA-T, which is about the size of a standard refrigerator, will be attached to the station's external module for demonstration via LCRD. 

Currently, LCRD is demonstrating the benefits of laser relay in geosynchronous orbit (22,000 miles above Earth), further refining NASA's laser capabilities by transmitting data between two ground stations and conducting experiments. Once ILLUMA-T is aboard the space station, the terminal will send high-resolution data, including pictures and video, to the LCRD at a rate of 1,200 megabits per second. The data will then be sent from LCRD to ground stations in Hawaii and California. This demonstration will show how laser communication can benefit low-Earth orbit missions.

ILLUMA-T is being launched as a payload on SpaceX's 29th commercial resupply services mission for NASA. During the first two weeks after launch, ILLUMA-T will be removed from the trunk of the Dragon spacecraft and installed on the station's Japanese Experimental Module Exposure Facility (JEM-EF). 

Once the payload is installed, the ILLUMA-T team will conduct initial testing and on-orbit inspections. Once that's done, the team will launch an onslaught of the payload's first light - a major milestone for the mission that will transmit the first laser beam to the LCRD through its optical telescope. Once the first light appears, data transmission and laser communication experiments will begin and continue throughout the planned mission.

Test lasers in different scenarios

In the future, operational laser communications will complement the radio frequency systems that many space missions still rely on to transmit data back to Earth. While ILLUMA-T is not the first mission to test laser communications in space, it brings NASA one step closer to actually applying the technology.

In addition to LCRD, ILLUMA-T's predecessors include: the 2022 TeraByte InfraRed Delivery system, which is currently testing laser communication on small Cubesats in low Earth orbit; Lunar laser communication demonstration to transmit data to and from lunar orbit and Earth during the Lunar Atmosphere and Dust Environment Explorer mission in 2014; And 2017 Lasercomm Science's optical payload, which demonstrates how laser communication can speed up the flow of information between Earth and space compared to radio signals.

Testing the ability of laser communications to generate higher data transfer rates in a variety of scenarios will help the aerospace community further refine the capabilities of future missions to the moon, Mars and deep space.

Source: OFweek

関連のおすすめ
  • Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

    Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President. Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace a...

    2024-11-20
    翻訳を見る
  • Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

    Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manu...

    2023-08-21
    翻訳を見る
  • Four ways researchers harness the power of lasers to achieve manufacturing excellence

    The use of industrial lasers has become a viable option for many manufacturing processes. It enables workers to simplify steps, improve precision and benefit from the benefits associated with output. Decision makers will get the best results when they consider the specific possibilities of using lasers in manufacturing. Here are some options.Improved cleaning and texturing methodsMany man...

    2023-08-04
    翻訳を見る
  • New LiDAR can 'see' faces from hundreds of meters away

    At a distance of 325 meters, the human eye may only be able to distinguish between a person's head and body, making it difficult to discern any other differences. But a research team including Heriot Watt University in the UK and Massachusetts Institute of Technology in the US has developed a new type of LiDAR scanner that can perform detailed analysis of a person's face from such a distance and c...

    02-11
    翻訳を見る
  • 43 seconds! Completion of laser welding of a new energy vehicle body

    March 8, in the three sessions of the 14th National People's Congress, the second “representative channel” focused on interviews, the National People's Congress, the party secretary of HGTECH Science and Technology, Chairman of the Board of Directors Ma Xinqiang, said in response to a reporter's question, in order to crack the “strangle  “technical problems, HGTECH over the years in the field of h...

    03-11
    翻訳を見る