日本語

The Future of Data Center Communication: Quantum Dot Semiconductor Comb Laser

544
2024-02-21 13:52:09
翻訳を見る

In the constantly evolving field of technology and data communication, researchers have made significant breakthroughs: developing a continuous wave O-band quantum dot semiconductor comb laser for wavelength division multiplexing optical interconnection. With its impressive performance characteristics, this development is expected to completely change the way we manage and transmit data, especially in demanding environments such as data centers.

According to publications in nature, this groundbreaking laser has an optical bandwidth of 2.2 THz and up to 89 comb wavelengths spaced at 25 GHz intervals. In addition, the laser also has a peak electro-optical power conversion efficiency of over 30% and an available laser power of up to 270 mW. It also demonstrates stable far-field output, with a coupling efficiency of 75% with permanent magnet fibers in butterfly packaging.

This laser is based on a simple two section device with gain and absorber sections. The cracked Fabry Perot laser is coated with high reflectivity near the absorber end and 30 reflectivity at the other end to achieve single-sided output laser. The epitaxial structure has been individually optimized for each laser, while considering that shorter cavities require higher modal gain to overcome radiation losses.

The emergence of quantum dot semiconductor comb lasers is a response to the growing demand for reliable, energy-efficient, and cost-effective optical interconnections. Specifically, it addresses the challenges of computing and exchanging bandwidth in data centers, which are facing increasing pressure due to exponential growth in data generation and processing.

These comb lasers provide eye-catching light sources for parallel WDM optical interconnection, making them a potential solution for short distance communication and computing applications. The unique characteristics of these lasers indicate that they may be key to improving data center speed and efficiency, significantly improving their performance and reducing energy consumption.

This development is just one of the many developments in the fields of photonics and semiconductor technology. For example, significant progress has been made in generating nanosecond pulses in lasers and using Q-switched lasers in scientific research.

In addition, efficient third harmonic generation in lithium niobate waveguides, defect induced photochromism in cadmium glass, and the local electronic structure of double perovskites are just a few exciting topics being explored, such as the Wiley online library.

The future of photonics and semiconductor technology also focuses on the generation of high-order harmonics in solids. This idea is an extension of HHG in gases and is currently being studied as it has the potential to stimulate the development of unique optoelectronics that can operate at the Petahertz frequency, as published in ACS publications.

In summary, the creation of quantum dot semiconductor comb lasers is a game changing development that will have a profound impact on data communication. As research continues and technology advances, these lasers can pave the way for faster and more efficient data centers, and ultimately usher in a new era of data communication.

Source: Laser Net

関連のおすすめ
  • Shenzhen Guangfeng Technology may cooperate with well-known German enterprises

    Recently, Shenzhen Guangfeng Technology Co., Ltd. once again disclosed a development fixed-point notice. Unlike other fixed-point notices received this year, this fixed-point notice points to the optical components of the vehicle's dynamic color pixel lights. According to company disclosure, Guangfeng Technology recently received a development notice from a leading international brand car compan...

    2024-11-18
    翻訳を見る
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    翻訳を見る
  • Japan and Germany jointly develop ultra high speed laser material deposition technology

    Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes o...

    2024-10-25
    翻訳を見る
  • Industrial laser giant Coherent receives $33 million investment

    Recently, according to media reports, industrial laser giant Coherent has signed a "preliminary terms memorandum" with the US Department of Commerce, which will receive up to $33 million in investment under the Chip and Science Act.It is reported that the funds will mainly be used to support the modernization and expansion project of the cutting-edge manufacturing cleanroom in Coherent's existing ...

    2024-12-12
    翻訳を見る
  • Jena Helmholtz Institute Using Air Deflection Laser Beam

    A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.Technology and PrinciplesThis innovative technology utilizes so...

    2023-10-07
    翻訳を見る