日本語

Graphene terahertz absorber and graded plasma metamaterials

213
2024-05-20 15:10:17
翻訳を見る

Optical metamaterials are an effective way to utilize their superior photon capture capabilities. Therefore, perfect absorbers can be achieved through nanoscale resonant plasmas and metamaterial structures.

Metamaterial perfect absorbers (MPAs) are typically composed of periodic subwavelength metals (such as plasma superabsorbers) or dielectric resonance units. Compared with static passive physical systems, tunable metamaterials can dynamically manipulate electromagnetic waves and improve multidimensional control of optical response. There are two typical strategies for achieving tunable properties in metamaterials: mechanical reconstruction and altering the lattice structure of metamaterials.

Compared to these classical methods, the combination of functional materials and metamaterial structures provides a way to change the optical properties of materials through external stimuli and has a faster response rate. Graphene, as a typical tunable functional material, has excellent mechanical, electrical, and optical properties. Combining graphene into metamaterial structures can significantly enhance the interaction between light and matter.

In this regard, Professor Wu Weiping's team has demonstrated a novel tunable ultra wideband terahertz absorber by utilizing the unique characteristics of graphene and hierarchical structure plasma metamaterials. The research paper of the team was published in the journal Advanced Equipment and Instruments.

The metamaterial structure includes alternating T-shaped gold bars/squares, dielectric layers, and graphene layers on the gold layer. The average absorption of MPA achieved 90% in the ultra wide frequency range from 20.8 THz to 39.7 THz. The origin of broadband characteristics was analyzed through electric field diagrams, and the modulation of graphene on the absorption window was studied. In addition, the influence of different parameters on the results was studied, and the potential applications of this structure in the field of optoelectronics were discussed.

Finally, some broadband absorbers in the terahertz far infrared band recently reported were compared and analyzed with the results of this work. The proposed metamaterial broadband absorber has higher average absorption and a wider frequency range. The proposed structure only has a patterned layer of gold, which has significant advantages in manufacturing compared to other literature.

In summary, a novel ultra wideband tunable terahertz absorber for graphene and hierarchical structure plasma metamaterials was proposed and studied, and numerical studies were conducted on the almost perfect ultra wideband absorption of 20.8THz-39.7THz. The proposed absorber is achieved by alternately arranging two gold structures of different sizes in each crystal cell. The bandwidth absorbed by the broadband absorber exceeds 90% and is approximately 18.9 THz.

By adjusting the Fermi level of graphene, the position of ultra wideband can be adjusted. In addition, the influence of geometric parameters on the absorption spectrum of the absorber was quantitatively analyzed. These results indicate that the metamaterial absorber proposed in this work can bring further improvements in the fields of tunable filtering, detectors, controlled thermal radiation, and other photonic devices.

Source: Laser Net

関連のおすすめ
  • The application of laser technology in the automated production line of energy storage/power battery PACK

    Lithium batteries are highly favored in the fields of 3C digital and new energy vehicles due to their high energy density, environmental characteristics, and fast charging and discharging. Welding, as a crucial link in the manufacturing process of lithium batteries, has a decisive impact on battery performance and quality. Laser welding technology is increasingly playing an important role in the l...

    2023-12-18
    翻訳を見る
  • Laser ablation helps to trace the origin of medieval metals

    Archaeologists have long wondered why the people of Anglo Saxon England began using more silver coins and fewer gold coins between 660 and 750 AD. Researchers in Europe now say they have developed a method to help find the answer. This technology combines laser ablation with traditional trace element analysis to match the isotopic abundance of silver bars in coins with known sources of metal ores ...

    2024-04-13
    翻訳を見る
  • Laser gyroscopes measure small changes in daytime length on Earth

    Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolongin...

    2023-09-19
    翻訳を見る
  • New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the dam...

    2024-07-08
    翻訳を見る
  • Photonic time crystals triggered by laser pulses may open the door to a new branch of optics

    When scientists discovered that laser pulses can rapidly cause refractive index changes in the medium, resulting in "photonic time crystals (PTC)" in the near-visible light band, the door to a disruptive new application in optics seemed to quietly open.Scientists have a certain degree of understanding of photonic crystals and time crystals, the two have almost nothing in common, the basic common p...

    2023-09-07
    翻訳を見る