日本語

Graphene terahertz absorber and graded plasma metamaterials

848
2024-05-20 15:10:17
翻訳を見る

Optical metamaterials are an effective way to utilize their superior photon capture capabilities. Therefore, perfect absorbers can be achieved through nanoscale resonant plasmas and metamaterial structures.

Metamaterial perfect absorbers (MPAs) are typically composed of periodic subwavelength metals (such as plasma superabsorbers) or dielectric resonance units. Compared with static passive physical systems, tunable metamaterials can dynamically manipulate electromagnetic waves and improve multidimensional control of optical response. There are two typical strategies for achieving tunable properties in metamaterials: mechanical reconstruction and altering the lattice structure of metamaterials.

Compared to these classical methods, the combination of functional materials and metamaterial structures provides a way to change the optical properties of materials through external stimuli and has a faster response rate. Graphene, as a typical tunable functional material, has excellent mechanical, electrical, and optical properties. Combining graphene into metamaterial structures can significantly enhance the interaction between light and matter.

In this regard, Professor Wu Weiping's team has demonstrated a novel tunable ultra wideband terahertz absorber by utilizing the unique characteristics of graphene and hierarchical structure plasma metamaterials. The research paper of the team was published in the journal Advanced Equipment and Instruments.

The metamaterial structure includes alternating T-shaped gold bars/squares, dielectric layers, and graphene layers on the gold layer. The average absorption of MPA achieved 90% in the ultra wide frequency range from 20.8 THz to 39.7 THz. The origin of broadband characteristics was analyzed through electric field diagrams, and the modulation of graphene on the absorption window was studied. In addition, the influence of different parameters on the results was studied, and the potential applications of this structure in the field of optoelectronics were discussed.

Finally, some broadband absorbers in the terahertz far infrared band recently reported were compared and analyzed with the results of this work. The proposed metamaterial broadband absorber has higher average absorption and a wider frequency range. The proposed structure only has a patterned layer of gold, which has significant advantages in manufacturing compared to other literature.

In summary, a novel ultra wideband tunable terahertz absorber for graphene and hierarchical structure plasma metamaterials was proposed and studied, and numerical studies were conducted on the almost perfect ultra wideband absorption of 20.8THz-39.7THz. The proposed absorber is achieved by alternately arranging two gold structures of different sizes in each crystal cell. The bandwidth absorbed by the broadband absorber exceeds 90% and is approximately 18.9 THz.

By adjusting the Fermi level of graphene, the position of ultra wideband can be adjusted. In addition, the influence of geometric parameters on the absorption spectrum of the absorber was quantitatively analyzed. These results indicate that the metamaterial absorber proposed in this work can bring further improvements in the fields of tunable filtering, detectors, controlled thermal radiation, and other photonic devices.

Source: Laser Net

関連のおすすめ
  • Michigan State University uses laser pulses to impact gold nanoparticles for crystal growth

    To make crystals suitable for use as optoelectronic materials, the key is to precisely control the crystallization, but this control is difficult.Producing lead halide perovskites, promising components for next-generation solar cells and photodetectors, has proven particularly challenging, with slow growth rates and uncontrolled nucleation being common issues.A project at Michigan State University...

    10-16
    翻訳を見る
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    翻訳を見る
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chine...

    04-30
    翻訳を見る
  • 92 new premium members have joined SPIE

    SPIE, the international society for optics and photonics, has welcomed 92 new Senior Members from 19 countries. SPIE Senior Members are Society Members of distinction who are recognized for their professional experience and technical accomplishments, their active involvement with the optics community and with SPIE, and for significant performance that sets them apart from their peers.The newly rec...

    08-01
    翻訳を見る
  • Manz AG officially announces its application for bankruptcy restructuring

    Last month, Manz AG officially announced that the company is about to undergo bankruptcy restructuring. The board of directors of the company believes that due to insufficient liquidity and excessive debt, Manz AG intends to apply for bankruptcy proceedings in accordance with bankruptcy laws. The application is expected to be submitted in the next few days. Manz AG is headquartered in Reutlingen...

    01-07
    翻訳を見る