日本語

Process practice of blue light semiconductor laser cladding copper on copper

160
2024-04-09 15:22:00
翻訳を見る

Laser Cladding, also known as laser cladding or laser cladding, is a method of adding cladding material to the surface of the substrate and using a high-energy density laser beam to melt it together with the thin layer on the surface of the substrate. It forms a metallurgical bonded additive cladding layer on the surface of the substrate, which can be used for surface strengthening and defect repair of metal materials.

01
Introduction to Copper Cladding Process on Copper
Copper and copper alloys are widely used in many fields such as military industry, metallurgy, marine equipment, and aerospace due to their excellent conductivity and thermal conductivity. The service environment in these fields is usually quite harsh, so higher requirements are put forward for the performance of copper parts, such as electromagnetic gun rails with high strength and conductivity, continuous casting crystallizers with high wear and heat resistance, copper rollers, etc.

The method of laser cladding is used to coat a layer of purple copper or copper alloy on the surface of copper substrate, which can greatly improve the corrosion resistance, wear resistance, and mechanical strength of copper substrate materials, and improve their service life. Meanwhile, for copper workpieces that cause defects in harsh service environments, laser cladding can also be used for repair and remanufacturing.

The copper cladding process has the following advantages:
Improving corrosion resistance: By covering the surface of copper based materials with a layer of copper or copper alloy, oxidation and corrosion can be effectively prevented, extending the service life of the material. Improving conductivity: Copper is an excellent conductive material, and covering it with a copper layer can improve the conductivity of the material, making it suitable for applications that require good conductivity. Enhancing mechanical strength: Covering with a copper alloy layer can increase the mechanical strength and wear resistance of the material, and improve its durability and stability. Repairing surface defects: The copper cladding process can be used to repair defects or damage on the surface of copper based materials, restoring a smooth surface and improving appearance quality. Widely applicable: The copper cladding process is suitable for various shapes and sizes of copper based materials, and can customize the thickness and shape of the covering layer to meet different needs. Environmental protection and energy conservation: Compared with other surface treatment methods, the copper cladding process usually has a higher energy efficiency ratio and lower environmental impact, which meets environmental protection requirements.

02
Difficulties in Copper Cladding Process
For conventional infrared lasers with a wavelength of around 1 µ m, using laser cladding for processing high anti metallic materials such as copper, aluminum, or gold presents significant challenges. The low laser absorption rate (~5%) makes it necessary to use a high-power laser to form a molten pool on the surface of copper materials. However, it can also cause the molten pool to be unstable and produce splashing during processing, making it easy to form a low-quality cladding layer with a large number of hole defects. The ultra-high thermal conductivity of copper exacerbates this problem. Therefore, it is difficult to effectively form a high-quality copper cladding layer on a purple copper substrate using infrared laser.

Blue light lasers exhibit excellent performance in copper processing, achieving absorption rates of up to 50% or more. Therefore, the use of blue light lasers can effectively solve the problem of surface melting of copper. But currently, the power of blue semiconductor lasers on the market is not high, mainly concentrated around 1000-2000 W, and it is difficult to achieve efficient and high-quality cladding effects for some large-sized copper components.

03
Product Introduction
Strong support from 3500 W blue semiconductor laser
In order to solve the surface cladding problem of large-sized copper components, Guangdong Institute of Hard Sciences has launched a 3500 W blue laser, model BLD-455-3500. The laser beam of this laser is output in free space, and the rectangular spot can directly act on the material surface without the need for additional fiber or laser processing head output, resulting in high electro-optical efficiency. The laser wavelength is 455 ± 10 nm, the power is continuously adjustable, and the maximum output power is higher than 3500 W. It can be applied in non-ferrous metal cladding, quenching and other fields, greatly improving processing efficiency and quality.

Product features
High power: The maximum output power is up to 3500 W, which is at the leading level in China
High absorption rate: Copper has an absorption rate of 65% for blue laser (13 times that of infrared laser)
High processing efficiency: High power, high absorption rate, fast processing speed
High processing quality: fewer defects, less spatter, and high density

Application scenarios
Laser cladding
In the field of metal cladding, the high power output of this laser makes the cladding process more efficient and energy-saving. Whether it is non-ferrous metals such as copper, aluminum, or other metals, high-quality cladding effects can be achieved.

Laser quenching
In the field of quenching, this laser can provide sufficient high power and uniform energy distribution, allowing the material to reach the quenching temperature in an extremely short time, thereby achieving fast and uniform quenching effects.

Additive manufacturing
In the field of laser additive manufacturing, the high power and high absorption rate of this laser can achieve faster processing speed, smaller heat affected zone, and better material performance.

epilogue
Thanks to the successful development of a 3500 W high-power blue semiconductor laser by Guangdong Institute of Hard Sciences, the problem of surface cladding of large-sized copper components with copper materials has been solved. The cladding device constructed using BLD-455-3500 blue light laser can achieve the cladding of copper alloy powders such as copper and bronze on the surface of copper substrates, which is expected to bring new opportunities to the industry.

Source: Sohu

関連のおすすめ
  • Microcomb launches a simplified design for powerful lasers based on chips

    Researchers at the University of Rochester have created new micro comb lasers that go beyond previous limitations and have simple designs suitable for various applications. The research results are published in Nature Communications.Optical frequency combs are optical measurement instruments that have revolutionized atomic clocks, spectroscopy, metrology, and other fields. However, the difficulty ...

    2024-05-25
    翻訳を見る
  • Micro laser opens the door to chip size sensors

    The new device is a frequency comb - a special type of laser that can generate multiple wavelengths of light, each with a fixed frequency interval. On the spectrogram, it looks a bit like the teeth of a comb. In approximately a quarter century since their first development, these "cursor rulers" have completely transformed various high-precision measurements from timing to molecular detection. In ...

    2024-03-13
    翻訳を見る
  • Zhejiang University has prepared ultra strong and tough 3D printing elastic materials

    Professor Xie Tao and researcher Wu Jingjun from the School of Chemical Engineering and Biotechnology at Zhejiang University have designed a new type of photosensitive resin and used it to create a "super rubber band" that can stretch to over 9 times its own length and lift 10 kilograms of objects with a "body" with a diameter of 1 millimeter through 3D printing. The relevant results were recently...

    2024-07-06
    翻訳を見る
  • Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

    The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or ...

    2024-08-05
    翻訳を見る
  • The researchers used ultrafast lasers to create nanoscale photonic crystals

    The optical properties of photonic crystals are closely related to their lattice constants, which are usually required to be in the same order of magnitude as the operating wavelength. In a crystal material, the photonic crystal structure is formed by the periodic arrangement in space of units whose dielectric constant is different from that of the crystal itself, and whose lattice constant depend...

    2023-08-04
    翻訳を見る