日本語

Ultraviolet spectroscopy: a leap in accuracy and precision under extremely low light levels

843
2024-03-08 14:18:39
翻訳を見る

Ultraviolet spectroscopy plays a crucial role in the study of electronic transitions in atoms and rovibronic transitions in molecules. These studies are crucial for the testing of fundamental physics, quantum electrodynamics theory, determination of fundamental constants, precision measurements, optical clocks, high-resolution spectroscopy supporting atmospheric chemistry and astrophysics, and strong field physics.

The scientists of the Nathalie Picqu é group at the Max Planck Institute for Quantum Optics have made a significant leap in the field of ultraviolet spectroscopy, successfully achieving high-resolution linear absorption double comb spectroscopy in the ultraviolet spectral range. This breakthrough achievement has opened up new possibilities for conducting experiments under low light conditions and paved the way for new applications in various scientific and technological fields.

Double comb spectroscopy is a powerful technique for precise spectral analysis over a wide spectral bandwidth, mainly used for infrared absorption of small molecules in the gas phase. It relies on measuring transient interference between two frequency combs with slightly different repetition frequencies.

A frequency comb is a spectrum of laser lines that are uniformly distributed and phase coherent, and its function is similar to a ruler, which can measure the frequency of light extremely accurately. The dual comb technology is not limited by the geometry of traditional spectrometers, providing enormous potential for high precision and accuracy.

However, dual comb spectroscopy typically requires a strong laser beam, making it less suitable for scenarios with low light levels that are crucial. The MPQ team has now demonstrated through experiments that dual comb spectroscopy can be effectively used under low light conditions that are more than one million times weaker than commonly used power levels.

This breakthrough was achieved using two different experimental devices and different types of frequency comb generators. The team has developed a photon level interferometer that can accurately record statistical data of photon counting and display the signal-to-noise ratio at the basic limit. This achievement highlights the optimal utilization of available light in experiments and opens up prospects for dual comb spectroscopy in challenging scenarios where low light levels are crucial.

MPQ researchers have solved the challenges associated with generating ultraviolet frequency combs and constructing dual comb interferometers with long coherence times, paving the way for achieving this coveted goal. They cleverly controlled the mutual coherence of two comb lasers, with each comb line having a flying tile, proving the optimal accumulation of interference signal counting statistics over an hour.

"Our innovative low light interferometry method overcomes the challenges of low nonlinear frequency conversion efficiency and lays a solid foundation for extending the dual comb spectrum to shorter wavelengths," commented Xu Bingxin, a postdoctoral scientist who led the experiment.

In fact, an exciting future application is to develop short wavelength dual comb spectra to achieve precise vacuum and extreme ultraviolet molecular spectra over a wide spectral range. At present, broadband extreme ultraviolet spectroscopy is limited in resolution and accuracy, and relies on unique instruments in professional facilities.

"Although UV dual comb spectroscopy is a challenging goal, it has now become a realistic goal due to our research. Importantly, our research results extend the full functionality of dual comb spectroscopy to low light conditions, opening up new applications in precision spectroscopy, biomedical sensing, and environmental atmospheric detection," concluded Nathalie Picqu é.
The research results are published in the journal Nature.

Source: Laser Net

関連のおすすめ
  • NLIGHT announces the launch of two new laser technologies at The Battery Show North America

    Recently, nLIGHT, a leading company in the fields of fiber optics and semiconductor lasers, announced the launch of two new laser technologies at The Battery Show North America: WELDForm and Automatic Parameter Adjustment (APT), aimed at meeting the dynamic needs of advanced battery manufacturing customers. In order to provide high-quality laser welding technology to the rapidly growing electric...

    2024-10-15
    翻訳を見る
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    翻訳を見る
  • Instrument Systems will showcase advanced optical measurement solutions for display technology in San Jose next week

    In the 2024 Showweek Germany Pavilion, Instrument Systems will showcase the LumiTop series, a series of imaging colorimeters designed specifically for high-precision and fast 2D measurements, to meet specific needs in AR/VR, automotive, and continuous production environments.The LumiTop 5300 AR/VR is a high-resolution camera developed specifically for evaluating near eye displays, which will recei...

    2024-05-09
    翻訳を見る
  • Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

    Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute ...

    2023-11-17
    翻訳を見る
  • BWT 969nm semiconductor pump source

    Semiconductor laser pump sources, especially those with a wavelength of 969nm, have become the preferred choice for high-power/high peak energy disc lasers due to their reduced quantum losses and heat generation.The 3000W 969nm fiber coupled semiconductor laser system launched by BWT uses 800 μ m NA0.22 fiber to output flat top optical energy distribution, combining lightweight and excellent optic...

    05-09
    翻訳を見る