日本語

Laser Photonics wins a large order from Lufthansa Technologies subsidiary

460
2023-12-19 18:18:30
翻訳を見る

Recently, American laser cleaning system developer Laser Photonics announced that the company has successfully secured an order for a cleaning technology laser cleaning system from Lufthansa Technik Puerto Rico, a technology subsidiary of Lufthansa, the largest aviation group in Europe.

Lufthansa Technik is the world's largest independent provider dedicated to providing maintenance, repair, and comprehensive overhaul (MRO) services for small and medium-sized aircraft to airlines.

It is reported that the company has chosen to purchase Laser Photonics's CleanTech LPC-1000-CTHS laser cleaning system as their preferred cleaning solution, and stated that this technology provides them with a wear free, environmentally friendly, cost-effective, and safe to operate cleaning method.

This single axis CleanTech laser cleaning system will be applied to Lufthansa's equipment cleaning operations to reduce the time required for cleaning and maintenance, thereby lowering costs and reducing maintenance time.

Laser Photonics' CleanTech LPC-1000-CTHS is a portable 1000W handheld laser that is the perfect tool for laser cleaning, rough machining, and precision machining of various surfaces such as iron/steel/aluminum, with a cleaning rate of 120 square feet per hour. This handheld laser cleaning system adopts the latest L4 level fiber laser technology, providing excellent results while being safer and more environmentally friendly compared to traditional abrasive cleaning methods.

関連のおすすめ
  • AEROTECH releases updated AUTOMATION1 motion control platform

    Aerotech is a global leader in precision motion control and automation, and every release has made the Automation1 motion control platform even stronger and more user-friendly. Version 2.5 brings TCP socket interface (test version), Automation1 MachineApps HMI development, new auxiliary module for motor settings, and improved machine settings for galvanometer laser scanning heads.Automation1 conti...

    2023-08-14
    翻訳を見る
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    翻訳を見る
  • MIT researchers have demonstrated a novel chip based resin 3D printer

    Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.The prototype processor does not have mobile components, but ...

    2024-06-17
    翻訳を見る
  • The team of researcher Wei Chaoyang of Shanghai Optical Machinery Institute has realized the manufacture of fused quartz components with high resistance to UV laser damage

    Recently, a team led by researcher Zhaoyang Wei of the Precision Optics Manufacturing and Testing Center of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has realized the manufacture of fused quartz components with high resistance to UV laser damage based on the defect characterization and removal process of CO2 laser. The research is published in Light: Advance...

    2023-09-11
    翻訳を見る
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chine...

    04-30
    翻訳を見る