日本語

Observation of laser power changes in ultrafast protein dynamics

948
2024-02-28 15:00:41
翻訳を見る

When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state without noticing.".

The laser did not observe a single photon excitation pathway that reflects the natural dynamics of myoglobin, but instead violently collided to induce multiphoton absorption. This raises a question, is the oscillation they see in protein artifacts this more energetic excitation? Now, Schlichting and her team have conducted experiments again at lower power for inspection.

The result surprised Schlichting. "We anticipate slight changes in the dynamics, but what we see is a significant change in carbon monoxide," she said. Unlike the instant photolysis they observed at high laser power, this reaction took hundreds of femtoseconds at low power. She said that the group modeled their observations and attributed their results to two different reaction pathways, the latter of which may better represent real reactions.

However, myoglobin only differs slightly at low power. This reassures Richard Neutz, a biochemistry professor at the University of Gothenburg. Although unrelated to the group, he did review the work before publication and wrote corresponding opinions on the impact of the results. "This work is very important because it indicates that we were not completely wrong before," he said. Essentially, past high-power experiments were not perfect, but still provided valuable insights into protein dynamics. "On the other hand," Neutze said, "the author also suggests that if you are really interested in ultrafast chemistry, it is important to conduct experiments correctly because there are subtle differences in the mechanisms that are important.".

In the end, Schlichting said that researchers only need to remain transparent about the systems they are engaged in. These experiments themselves are challenging. "Sometimes you either go home without any data or do it in a multiphoton state," she said, "but you should be honest with it.".

Source: Laser Net

関連のおすすめ
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    翻訳を見る
  • Fraunhofer IZM launches quantum cascade project to develop modular laser system

    Creating new laser systems for use in spectroscopy applications is a challenging and costly endeavor. In order to give even small and medium-sized enterprises access to such innovative technology, the Fraunhofer Institute for Reliability and Microintegration (IZM) co-launched the QuantumCascade project to develop a modular laser system for a range of multispectral analytics.This week the IZM repor...

    07-30
    翻訳を見る
  • Jenoptik announces record high preliminary performance for 2024

    Recently, Jenoptik, a German company, released its preliminary performance for 2024, delivering a record high in both revenue and profit, but also revealing hidden concerns amidst industry cyclical fluctuations. Against the backdrop of weak demand in the semiconductor equipment market and increasing global economic uncertainty, this company with laser and optical technology as its core is attempti...

    02-14
    翻訳を見る
  • Gas reduction technology of fiber laser helps to improve the cutting quality of low-carbon steel

    The Mitsubishi GX-F Advanced series of artificial intelligence enabled fiber lasers now use patented gas and burr reduction technology to help improve cutting quality while reducing gas consumption when cutting low-carbon steel.Mitsubishi Laser's proprietary Agr Mix nozzle technology does not require an external mixing tank or high-pressure oxygen. The combination of low-pressure air and nitrogen ...

    2024-02-14
    翻訳を見る
  • Trotec Lasersysteme Darmstadt Laser Cutting Technology Center opens

    Trotec Laser, a manufacturer of laser technology in Upper Austria, is opening a new laser cutting competence center. The expanded showroom in Darmstadt now also houses three new large format laser cutters from the SP series. This strategic move is designed to meet the growing demand for large format laser cutting solutions.To celebrate the reopening of the Darmstadt Competence Centre, Trotec will ...

    2023-09-06
    翻訳を見る