日本語

Researchers have captured the strange behavior of laser induced gold

854
2024-02-17 11:20:40
翻訳を見る

A new study conducted by the US Department of Energy's SLAC National Accelerator Laboratory has revealed the strange behavior of gold when impacted by high-energy laser pulses.

When certain materials are subjected to strong laser excitation, they will quickly disintegrate. But gold is exactly the opposite: it becomes more resilient and resilient. This is because the way gold atoms vibrate together - their phonon behavior - has changed.

"Our research findings challenge previous understanding, indicating that under certain conditions, metals like gold become stronger rather than melting when subjected to strong laser pulses," said Adrien Descamps, a researcher at Queen's University of Belfast who led the study during his graduate studies at Stanford University and SLAC. This is in stark contrast to semiconductors, which become unstable and melt.

For decades, simulations have hinted at the possibility of this phenomenon, known as phonon hardening. Now, using SLAC's linear accelerator coherent light source, researchers have finally brought this phonon hardening to people's attention. The team has published their research results in Scientific Progress.

"It's a fascinating journey to see our theoretical predictions validated in experiments," said collaborator Emma McBride, a researcher at Queen's University Belfast and former Panofsky researcher at SLAC's high-energy density science department. The accuracy of measuring these phenomena on LCLS is astonishing, opening up new possibilities for future research in materials science.

In their experiment, the team aimed an optical laser pulse at a thin gold film in an extreme conditions material laboratory chamber, and then used ultrafast X-ray pulses from LCLS to capture atomic level snapshots of material reactions. This high-resolution glimpse of the world of gold atoms allows researchers to observe subtle changes and capture the moment when phonon energy increases, providing specific evidence of phonon hardening.

"We use X-ray diffraction in LCLS to measure the structural response of gold to laser excitation," McBride said. This reveals insights into the arrangement and stability of atoms under extreme conditions.

Researchers have found that when gold absorbs extremely high-energy optical laser pulses, the force that holds its atoms together becomes stronger. This change causes atoms to vibrate faster, which can alter the reaction of gold to heat and may even affect its melting temperature.

"Looking ahead, we are pleased to apply these findings to more practical applications, such as laser processing and material manufacturing, where understanding these processes at the atomic level may lead to improvements in technology and materials," Descamps said. We also plan to conduct more experiments and hope to explore these phenomena on a wider range of materials. For our field, this is an exciting moment, and we look forward to seeing where these findings will take us.

Source: Laser Net

関連のおすすめ
  • Oxford University develops technology for capturing strong laser pulses in one go

    Physicists at the University of Oxford have unveiled a “pioneering” method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, a collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize the ability to control light-matter interactions, say the team.The Oxford announcement sta...

    07-07
    翻訳を見る
  • Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

    Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manu...

    2023-08-21
    翻訳を見る
  • New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the dam...

    2024-07-08
    翻訳を見る
  • TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

    TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.This upgrade ...

    2023-08-21
    翻訳を見る
  • Application of laser technology in electric vehicles to improve safety and reduce rusting

    Trumpf has developed a laser application to improve the safety of electric vehicles, which can be used for adhesive and coating preparation in battery production, as well as anti-corrosion of aluminum components. This not only enhances safety but also prevents rusting of the vehicle.“Selective surface processing with lasers is a clean and fast alternative to chemical processes in the automotive in...

    10-13
    翻訳を見る