日本語

Aerosol jet printing can completely change the manufacturing of microfluidic devices

681
2024-02-02 18:12:01
翻訳を見る

Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.

A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various materials, greatly reducing development time.

In a study published in Microsystems and Nanoengineering, researchers from Duke University and Virginia Tech were the first to integrate aerosol jet printing technology into the manufacturing of SAW microfluidic devices. This progress provides a faster, more universal, and cleanroom free method for developing chip laboratory applications, completely changing the field from biology to medicine.

In this groundbreaking study, the team utilized aerosol jet printing to manufacture SAW microfluidic devices. This method contrasts sharply with traditional and cumbersome cleanroom processes.

It involves depositing various conductive materials onto substrates to form interdigital transducers, which is crucial for generating SAW to manipulate fluids and particles at the microscale.

It is worth noting that this method reduces the manufacturing time of each device from approximately 40 hours to approximately 5 minutes. The team thoroughly analyzed the acoustic performance of these printing equipment using a laser Doppler vibrometer and compared it with the equipment manufactured in the cleanroom.

The results demonstrate enormous potential, with printing equipment exhibiting similar or acceptable performance levels in terms of resonant frequency and displacement field. This study represents a significant advancement in the manufacturing of microfluidic devices, providing a faster, more adaptable, and more efficient alternative to traditional methods.

Dr. Tian Zhenhua, co-author of the study, said, "This is not just a step forward; it is a leap towards the future of microfluidic device manufacturing. Our method not only simplifies the process, but also opens up new possibilities for device customization and rapid prototyping design.".

The impact of the new method is enormous, as it provides a more convenient, faster, and cost-effective way to produce microfluidic equipment. It has the potential to accelerate research and development in numerous fields, enabling faster diagnosis, improved drug delivery systems, and enhanced biochemical analysis.

In addition, the versatility of this technology indicates its adaptability to various materials and substrates, and it is expected to be widely applied in various disciplines.

Source: Laser Net

関連のおすすめ
  • The University of Stuttgart has simplified the detection of nanoplastics

    Detecting the presence of nanoscale plastic particles in the environment has become a topic of concern for industrial societies worldwide, not least since particles of that size can evade the body's blood-brain barrier and damage metabolic processes.Optical technologies have been at the forefront of these monitoring efforts. Recent examples have included the use of stimulated Raman scattering to s...

    1日前
    翻訳を見る
  • The semiconductor Institute has made progress in the study of high power and low noise quantum dot DFB single-mode lasers

    Recently, the team of Yang Tao-Yang Xiaoguang, a researcher at the Key Laboratory of Materials Science of the Institute of Semiconductors of the Chinese Academy of Sciences, and Lu Dan, a researcher, together with Ji Chen, a professor at the Zhijiang Laboratory of Zhejiang University, have made important progress in the research of high-power, low-noise quantum dot DFB single-mode lasers.Distribut...

    2023-09-05
    翻訳を見る
  • Alliance unit Hongshan Laser has released multiple "heavyweight" new products such as heavy-duty pipe cutting machines, ushering in the era of "laser+"

    On September 19th, Hongshan Laser made a stunning appearance at the Shanghai Industrial Expo with multiple flagship products. Among them, the "4+1" fully free heavy-duty groove laser pipe cutting machine TL730S, the 6G fully direct drive laser cutting machine G4020V, and the flagship drilling and attacking integrated laser composite pipe cutting machine TP65SD, represented by three new products, v...

    2023-09-21
    翻訳を見る
  • Multiple international laser companies continue to increase investment in the Chinese market

    In early spring of 2025, China's laser industry once again attracted the attention of global laser giants, ushering in a new wave of international investment boom.After several global laser giants accelerated their layout in China in 2024, in February 2025, Carl Zeiss from Germany and Bystronic from Switzerland, two global giants in the optical and laser fields, also announced significant expansio...

    02-15
    翻訳を見る
  • Visual platforms bring new perspectives to optical research

    The advanced testing platform of Liquid Instruments is now available for Apple Vision Pro, providing optical researchers with the first interactive 3D testing system. By integrating the Moku system with camera based visual devices, the efficiency of the laboratory has been significantly improved.The Moku platform utilizes the processing power of field programmable gate arrays (FPGAs) to provide a ...

    2024-05-23
    翻訳を見る