日本語

Progress has been made in the development of anti resonant hollow core fiber Raman probes with low background noise at Shanghai Optics and Machinery Institute

519
2024-05-22 14:31:30
翻訳を見る

Recently, the research team of the Special Glass and Fiber Research Center of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, aimed at the demand for in-situ detection of Raman signals, expanded the functions of the laboratory commercial Renishaw Invia confocal micro Raman spectrometer by using two independently designed and prepared anti resonant hollow core fibers (AR-HCFs) and external optical path modules, and added the in-situ detection function. The related achievements were published in Biomedical Optics Express under the title "In site background free Raman probe using double clamping anti resonant hollow core fibers".

Traditional quartz solid core optical fibers are widely used as probes for Raman detection due to their low loss and wide transmission window, making them ideal media for optical signals. When applied, although it can overcome the limitations of sample shape, size, and position, the interaction between the quartz glass material and the pump laser will generate a very strong background noise signal, which often masks the Raman spectral information of the test sample. In previous research reports, the mainstream solution was to use multiple fiber probes, utilizing different fibers to conduct excitation light and collect signal light. But this solution also requires adding optical components such as filters at the far end of the fiber optic, which not only reduces the efficiency of signal collection, but also increases the volume of the probe.

Researchers used the stack and draw method to manufacture two different double clad AR-HCFs, with cross-sections shown in Figure 1. They can mainly constrain the laser to conduct in the hollow core, greatly reducing the overlap between the optical field and the quartz material of the fiber itself, thereby greatly suppressing quartz background noise. After performance testing, the two fiber probes can achieve about two orders of magnitude of quartz background noise suppression compared to traditional solid core quartz fibers. Both AR-HCFs have been specially designed to achieve low loss in the visible and near-infrared bands, and have a larger numerical aperture (NA) in the outer layer (the NA of the outer layer is greater than 0.2, about ten times that of the fiber core). The characteristic of this work is to use only one fiber as the probe for Raman detection, and to combine the probe with the commercial Renishaw Invia confocal microscopy Raman spectrometer using a specially designed external optical path module, as shown in Figure 2. The module is connected to the original objective interface of the spectrometer, which can couple the excitation light emitted internally to AR-HCFs, and also transmit the Raman signal collected by the fiber optic probe back to the spectrometer for detection and analysis. While leveraging the high detection accuracy of the instrument, it can also expand its in-situ detection capabilities. The feasibility of the scheme was also verified by using probes to detect some solid and liquid samples, such as in-situ detection of ABS plastic, as shown in Figure 3. The research results are expected to have broader application prospects in fields such as environmental monitoring and biomedicine.

The electron microscope end face photos of two anti resonant hollow core optical fibers in Figure 1 are shown in (a) and (b), respectively, while (c) and (d) show photos of both taken by illuminating the back of the optical microscope.

Figure 2 Schematic diagram of Raman sensing scheme optical path.

Figures 3 (a) and (b) show the Raman spectra of two types of anti resonant hollow core fibers used as probes for detecting ABS plastic. The orange curve is obtained from the probe measuring the sample, the blue curve is the background signal of the probe itself, and the yellow curve is the spectrum directly measured by the Renishaw Invia confocal microscopy Raman spectrometer.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

関連のおすすめ
  • Breakthrough in Light Manipulation: Revealing New Finite Barrier Bound States

    Exploring the propagation and localization of waves in various media has always been a core focus of optics and acoustics. Specifically, in photonics and phononics, scientists have been dedicated to understanding and controlling the behavior of light and sound waves in periodic media.Photonic crystals have unique bandgap characteristics, providing an excellent platform for studying wave propagatio...

    2024-03-25
    翻訳を見る
  • Valeo SCALA 3 LiDAR won the "Vehicle Technology and Advanced Mobile Mobility" Innovation Award at the 2024 CES Consumer Electronics Exhibition

    The SCALA 3 LiDAR (Laser Detection and Ranging System), the third generation LiDAR scanner from Valeo, won the "Vehicle Technology and Advanced Mobile Mobility" Innovation Award at the 2024 CES Consumer Electronics Exhibition.The first and second generation Fareo LiDARs SCALA 1 and SCALA 2 have achieved autonomous driving in traffic congestion situations. The third-generation LiDAR SCALA 3 has sig...

    2023-11-22
    翻訳を見る
  • Tower and Fortsense have announced the launch of their highly advanced 3D imager for LiDAR

    Recently, Gaota Semiconductor announced the successful development of an advanced 3D imager based on dToF technology for LiDAR applications. The newly developed product FL6031 is based on Tower's 65nm Stacked BSI CIS platform and has pixel level hybrid bonding function. It is the first in a series of products aimed at meeting the needs of numerous deep sensing applications in the automotive, consu...

    2023-09-14
    翻訳を見る
  • Trotec Lasersysteme Darmstadt Laser Cutting Technology Center opens

    Trotec Laser, a manufacturer of laser technology in Upper Austria, is opening a new laser cutting competence center. The expanded showroom in Darmstadt now also houses three new large format laser cutters from the SP series. This strategic move is designed to meet the growing demand for large format laser cutting solutions.To celebrate the reopening of the Darmstadt Competence Centre, Trotec will ...

    2023-09-06
    翻訳を見る
  • Switzerland's top 100 sales drop to 330.9 million Swiss francs in the first half of the year

    Recently, Swiss company Bystronic disclosed its financial performance for the first half of 2024.The financial report shows that the market situation for the Swiss Super 100 in the first half of 2024 remains very tense. Customers in various end markets are unable to fully utilize their production capacity, and operations in all regions are relatively cautious.Despite Swiss supercar actively reduci...

    2024-07-24
    翻訳を見る