日本語

Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

333
2024-01-02 15:13:24
翻訳を見る

Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.

Research Background
Nitrogen dioxide is a common pollutant, mainly derived from fossil fuel combustion emissions, natural lightning, and microbial processes in soil. NO2 in the atmosphere contributes to the formation of ground ozone, which may cause photochemical smog and increase the acidity of rainwater. Continuous exposure to high concentrations of NO2 may have various short-term and long-term adverse health effects on the respiratory systems of humans and animals. Therefore, developing a cost-effective and robust NO2 monitoring sensor system is crucial.

Many technical solutions have been developed for NO2 detection. Chemiluminescence and wet chemical analysis are commonly used for NO2 detection. However, these methods have a slow response time and low selectivity in distinguishing between NO and NO2, which limits their application. Optical methods based on absorption spectroscopy have high sensitivity, selectivity, and fast response, providing a powerful means for trace gas analysis. The laser absorption spectroscopy technology based on the mid infrared molecular fingerprint region is very ideal for trace gas analysis, as most atmospheric components have strong fundamental vibrational transitions in this spectral region, achieving high sensitivity and selective detection of trace gases. The commercially available continuous wave (CW) quantum cascade lasers (QCLs) in the mid infrared spectral region have been widely used in the development of spectroscopic techniques for quantitative analysis of NO2.

Experimental setup
In this work, we constructed a laser absorption spectrometer based on mid infrared CW-QCL in the laboratory to revise the spectral range from 1629 cm-1 to 1632 cm-1. The figure shows a schematic diagram of the spectral setup based on mid infrared CW-QCL for studying NO2 absorption spectral line parameters.

Ningbo Haier Xin Optoelectronic Technology Co., Ltd. provided a laser emitter (QC-qubeTM) and driver (QC750 TouchTM) for this project. A CW room temperature QCL chip is packaged in a thermoelectric (TE) cooled beam shaping package, driven by an integrated temperature and low noise current controller.

The laser source operates in the wavelength range of 1629 cm-1 to 1632 cm-1, without mode switching, and has an average output power of 30 mW. The laser frequency is scanned using triangular waves at a typical frequency of 100 Hz. The linewidth of the laser is approximately<10 MHz, so the broadening caused by the laser linetype can be ignored. The laser beam is initially collimated and passes through a sample cell with an optical path of 29.6 cm. The wedge-shaped CaF2 window placed at Brewster angle is used to avoid residual Etalon stripes. The QCL output beam is combined with visible red light (632.8 nm) through a ZnSe beam splitter to facilitate optical adjustment of the QCL output beam. The main beam passing through the sample pool is focused onto a TE cooled high-speed infrared photovoltaic detector through a convex lens, which can operate at room temperature. Therefore, the detector does not require liquid nitrogen refrigeration, simplifying the routine use of the system and allowing for long-term automated operation. The data is then obtained using a data acquisition board. The other part of the beam is coupled to an Etalon, which consists of two ZnSe mirrors with a free spectral range of 0.0163 cm-1.

Conclusion
In this study, we developed a compact spectral sensor based on thermoelectric cooling for the detection of trace amounts of NO2 using a room temperature continuous wave quantum cascade laser (RT CW-QCL). The high-resolution spectra of NO2 and N2 mixtures were studied in detail at room temperature (~296 K) and within a pressure range of 0-90 millibars. The absorption spectrum was fitted using standard Voigt profiles. Accurate measurements of line intensity and N2 pressure induced broadening coefficient were conducted for 43 NO2 spectral lines around 6.2 microns. This spectral region is very suitable for high-sensitivity detection of NO2 concentration. Our results are quite consistent with the latest HITRAN16 database in terms of spectral line intensity. Experimental spectral parameters will help upgrade our newly developed NO2 gas sensor system for atmospheric trace gas monitoring and industrial process control. In addition, we hope that these results have important value for the spectral database of NO2 molecules.

Source: Sohu

関連のおすすめ
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    翻訳を見る
  • The most advanced gas sensing laser technology will be exhibited at the upcoming CEM 2023 exhibition in Barcelona

    Nanoplus Nanosystems and Technologies GmbH is an ISO 9001:14001 certified supplier and one of the world's most famous laser manufacturers for gas sensing applications. The cornerstone of nanoplus's success is its unique patented method of manufacturing DFB laser sources. Nanoplus celebrates its 25th anniversary this year and separated from the University of Vilzburg in 1998.Among the outstanding i...

    2023-09-14
    翻訳を見る
  • What are double- and triple-stack hybrid stepper motors

    Of the three primary stepper motor designs — permanent magnet, variable reluctance, and hybrid — hybrid stepper motors are arguably the most popular in industrial applications, combining the best performance characteristics of permanent magnet and variable reluctance types.Hybrid stepper motors are constructed with a rotor made of two sections, or cups, with a permanent magnet between ...

    2023-09-16
    翻訳を見る
  • Progress has been made in the corrosion mechanism of alkali aluminum phosphate glass at Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, has made new progress in the corrosion mechanism of alkali aluminophosphate glass. The research findings were published in The Journal of Physical Chemistry C under the title "Formation Mechanism of Crystal Phase during Corrosion ...

    2024-07-10
    翻訳を見る
  • Laser fusion breakthrough brings greater energy explosion

    Recently, scientists from the National Ignition Facility at Lawrence Livermore National Laboratory in California produced a burst of energy by bombarding hydrogen pellets with 192 laser beams, briefly reproducing the fusion process that powers the sun. This is a repeat of an experiment in December last year, but this time the scientists generated more energy, with a gain almost double that of the ...

    2023-09-26
    翻訳を見る