日本語

Samsung Heavy Industries Developing a Laser High Speed Welding Robot for Liquefied Natural Gas Ships

557
2023-09-22 15:04:02
翻訳を見る

South Korea's Samsung Heavy Industry announced on Thursday that it has developed the first laser high-speed welding robot in the maritime field, aimed at significantly improving the construction efficiency of liquefied natural gas (LNG) transport ships.

This new technology is specifically designed for rapid welding of thin film panels used in cargo compartments of liquefied natural gas transport ships. These films are made of thin layers of stainless steel and come into direct contact with ultra-low temperature liquid natural gas.

Compared to the traditional plasma arc welding (PAW) method, which takes about 5 minutes to weld a 2-meter-long membrane plate, the new robot can complete the task in just 1 minute.

The laser high-speed welding robot is developed by Samsung Production Technology Research Center and uses a swinging method to rotate the laser beam at precise intervals and speeds.

This technology also has defocusing function for adjusting the focus and laser displacement sensor for automatically positioning the bending welding position.

The integration of this advanced welding technology is expected to significantly improve the productivity of shipbuilding companies in the construction of liquefied natural gas transport ships.

The company plans to conduct application testing with the French engineering company GTT's liquefied natural gas cargo hold (MK-III) and begin full-scale production using this technology after obtaining final customer approval later this year.

Cui Douzhen, the head of Samsung Heavy Industry Production Technology Research Center, said: "Laser high-speed welding robots will become the core technology to maintain overwhelming competitiveness in the key process of liquefied natural gas transport ship cargo hold construction." "We plan to expand its application to the cargo hold of ultra-low temperature liquid hydrogen transport ships in the future.

Source: Laser Network

関連のおすすめ
  • The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

    The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been...

    2023-10-28
    翻訳を見る
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    翻訳を見る
  • Omnitron Announces Partnership with Silex Microsystems to Mass Produce MEMS Scanning Mirrors for LiDAR

    According to reports, Omnitron Sensors, a pioneer in the development of MEMS sensing technology for large-scale and low-cost markets, recently announced that it will collaborate with Silex Microsystems, a subsidiary of Semielectronics, to mass produce MEMS scanning mirrors for LiDAR.Eric Aguilar, co-founder and CEO of Omnitron Sensors, said, "We have noticed a huge demand from manufacturers of adv...

    2023-09-19
    翻訳を見る
  • Southeast University makes new progress in quantum efficiency research of van der Waals light-emitting diodes

    Recently, Professor Ni Zhenhua from the School of Electronic Science and Engineering at Southeast University, Professor Lv Junpeng from the School of Physics, Professor Liu Hongwei from the School of Physical Science and Technology at Nanjing Normal University, and Professor Zhou Peng from the School of Microelectronics at Fudan University collaborated to propose a van der Waals light-emitting dio...

    2024-10-28
    翻訳を見る
  • Shanghai Institute of Optics and Fine Mechanics has made progress in composite material based picosecond mirrors

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of composite based picosecond mirrors. The related research results were published in Optics and Laser Technology under the title of "Hybrid Material Based Mirror Coatings for Picosed Laser Applications"....

    2024-07-12
    翻訳を見る