日本語

Breaking the production record! Laser and lithium achieve ammonia production under environmental conditions for the first time

322
2023-10-16 10:52:37
翻訳を見る

The application of laser technology has revolutionized the methods of nitrogen fixation, providing a new method for synthesizing ammonia under environmental conditions. Recently, researchers have used commercial carbon dioxide lasers for the first time to disrupt the nitrogen nitrogen triple bond, providing a new green alternative to the Haber Bosch process.

It is reported that the international research team uses lasers to convert lithium oxide into metallic lithium, which then spontaneously reacts with nitrogen in the air to form lithium nitride. This salt is easily hydrolyzed into ammonia, making the production of this method break historical records.

The new laser based process is more effective in producing ammonia than the traditional Haber Bosch process (Image source: Helmholtz Institute for Renewable Energy)

We have introduced a groundbreaking concept that utilizes high-energy lasers to promote the conversion of various oxides into nitrides, "said Huize Wang, the first author from the Helmholtz Renewable Energy Research Institute in Germany.

He added, "We have achieved unprecedented yields at room temperature and atmospheric pressure. Compared to other methods, this achievement is very significant." The actual yield is two orders of magnitude higher than other state-of-the-art solutions, including electrochemical and mechanochemical methods.

Victor Mougel, an expert in small molecule electrochemical conversion at ETH Zurich, Switzerland, said: "This is a novel method for producing green ammonia, which may be more sustainable compared to the Haber Bosch process. The Haber Bosch process is very energy-efficient and can also lead to carbon dioxide emissions due to its operation at high temperatures and pressures.

In addition, he also stated that the new method "has operational flexibility and environmental benefits" as it works under environmental conditions. This process can also directly generate ammonia where needed, thereby reducing transportation costs.
The team utilizes infrared lasers to provide sufficient energy to dissociate lithium oxygen bonds and generate metallic lithium from lithium oxide. When exposed to air, lithium metal spontaneously combines with nitrogen, breaking the nitrogen nitrogen triple covalent bond and generating lithium nitride.

He further explained, "Next, we hydrolyze the lithium nitride produced by laser to obtain ammonia and lithium hydroxide. In addition, this method provides an opportunity for chemical cycling. Laser can induce the conversion of lithium hydroxide back to lithium nitride, effectively ending the lithium cycle.

He added, "This has also become another new concept - the conversion of hydroxides to nitrides
However, Ivan Stephens, an expert in electrochemistry and nitrogen fixation at Imperial College London in the UK, remains skeptical. He said, "I have doubts about the long-term sustainability of this high yield. Additionally, it is a batch process rather than a continuous process, which greatly limits its feasibility. Compared to new laser induced methods, electrochemical technology can achieve continuous operation, which is a significant advantage.

In addition, the energy demand of lasers may pose problems for expanding ammonia synthesis. He added, "If you only produce ammonia on a small scale as fertilizer in remote areas, then energy efficiency becomes less important.

Researchers propose that their method has significant advantages over electrochemistry, such as desolvation and simplification. In addition, with the expansion of production scale, all emerging ammonia synthesis methods face the greatest challenge. Researchers envision expanding this process by distributing lithium oxide powder on the grid surface and then irradiating the reaction cell array one by one with a laser. In addition, researchers also observed similar behaviors of other oxides, such as magnesium, aluminum, zinc, and calcium, despite their low yields.

He explained, "This may be because other oxides are more difficult to dissociate and hydrolyze." However, the reactivity of alkaline and alkaline earth metals to nitrogen seems promising. He said, "Our recent research has shown that richer metals such as magnesium and calcium can also decompose nitrogen.

Source: OFweek

関連のおすすめ
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    翻訳を見る
  • Comparison of Blue and Infrared Wavelength in Pure Nickel Laser Deep Fusion Welding Process

    It is reported that researchers from BIAS Bremer Institution f ü r angewandte Strahltechnik GmbH in Germany have reported a comparative study of laser deep penetration welding processes for pure nickel using blue and infrared light wavelengths. The related research was published in Welding in the World under the title "Process comparison of laser deep penetration welding in pure nickel using blue ...

    2024-08-13
    翻訳を見る
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    翻訳を見る
  • Scientists demonstrate effective fusion "spark plugs" in groundbreaking experiments

    Researchers from the Laser Energy Laboratory at the University of Rochester led the experiment and demonstrated an efficient "spark plug" for direct driving of inertial confinement fusion. In two studies published in the journal Nature Physics, the team shared their findings and detailed the potential to expand these methods with the aim of successful nuclear fusion in future facilities.LLE is the...

    2024-03-04
    翻訳を見る
  • The world's highest power industrial grade fiber laser is released in Tianjin

    On August 31st, Tianjin Kaipulin Optoelectronics Technology Co., Ltd. (hereinafter referred to as Kaipulin), a Tianjin Port Free Trade Zone enterprise, officially released the world's first 200000 watt ultra-high power industrial grade fiber laser, breaking the record for the highest power of industrial grade fiber lasers in the world and marking China's stable position in the international advanc...

    2024-09-02
    翻訳を見る