日本語

Researchers at the Massachusetts Institute of Technology have designed a new type of quantum light source using lead salt perovskite nanoparticles

182
2023-10-09 15:20:21
翻訳を見る

Most traditional quantum computing uses the spin of supercooled atoms or individual electrons as quantum bits, which form the foundation of such devices. By comparison, if light is used to replace physical entities as basic quantum bits, ordinary lenses and optical detectors can replace expensive devices to control the data input and output of quantum bits.

Based on this, chemistry professors Moungi Bawendi and graduate student Alexander Kaplan from the Massachusetts Institute of Technology designed a new type of quantum light source using a common solar photovoltaic material (lead salt perovskite nanoparticles) and demonstrated that the material has a fast low-temperature radiation rate and can emit single photon streams with the same characteristics. Although this work is currently only a basic study of the functions of these materials, it is expected to pave the way for new optical quantum computers and quantum teleportation devices for communication. This achievement was published in Nature Photonics under the title "Hong Ou Mandel interference in colonial CsPbBr3 perovskite nanocrystals" (DOI: 10.1038/s41566-023-01225-w).

Microscopic imaging of perovskite nanoparticles
Kaplan said that by combining photons similar to qubits with some common linear optical devices, people can build a new quantum computer. The key to the entire research lies in not only generating these photons, but also ensuring that each photon accurately matches the quantum properties of previous photons. Generally speaking, the truly significant paradigm shift in scientific research is the shift from requiring very special and expensive optical devices to requiring only simple and common equipment.

Bawendi explained that they utilize these identical and indistinguishable single photons and interact with each other. This inseparability is very important. If two photons are identical, you cannot distinguish which is the first and which is the second. There is no way to track them, which is why they are allowed to interact. Kaplan said that if people want photons to have this very special property, which is well defined in terms of energy, polarization, spatial mode, temporal mode, and everything that can be encoded using quantum mechanics, they also need a single photon light source with very good quantum performance.

In the experiment, the research team used lead salt perovskite nanoparticles as luminescent materials. Lead halide perovskite thin films are lighter and easier to process than the widely used silicon based photovoltaic materials today, and have received widespread attention as potential next-generation photovoltaic materials. Unlike other colloidal semiconductors, lead halide perovskite in the form of nanoparticles has extremely fast low-temperature emissivity. The faster light is emitted, the more likely the output is to have a clear wave function. Therefore, the rapid radiation rate enables lead halide perovskite nanoparticles to uniquely emit quantum light.

To test that the designed single photon source indeed has this indistinguishable characteristic, the standard test is to detect a specific type of interference between two photons called red Euclidean interference. Kaplan stated that this phenomenon is at the core of many quantum based technologies, so proving its existence has become the standard for confirming that photon sources can be used for these purposes. But the materials that meet this testing requirement are very few, almost just a handful. Although the new light source designed by the research team is not yet perfect and only generates HOM interference in about half of the cases, it has significant improvements in scalability compared to other light sources and can be integrated into other devices. Because other light sources use very pure materials and are composed of one atom after another, their scalability and repeatability are relatively poor.

In contrast, perovskite nanoparticles are made in solution and then simply deposited on the substrate material. What we do is simply spin coat it onto the surface of ordinary glass, "Kaplan said. But in this way, they also observed a phenomenon that could only be seen under very strict production processes before.

The research team stated that the importance of this work lies in the hope that it can encourage people to study how to further enhance functionality in various device architectures. They are fully confident that integrating this new light source into an optical cavity will bring its performance to a competitive level.

Source: China Optical Journal Network

関連のおすすめ
  • Coherent CEO Resigns in Restructuring

    Recently, laser giant Coherent (COHR) released an announcement.Coherent Corporation announced that President Walter R. Bashaw II will resign on September 6, 2024, due to a company restructuring that resulted in the cancellation of his position.His resignation is classified as a 'Good Reason' termination, which ensures that he will receive full severance compensation in accordance with existing com...

    2024-08-20
    翻訳を見る
  • The estimated output value of the LiDAR market in 2029 is expected to reach 5.352 billion US dollars

    Market research firm TrendForce Consulting released an industry insight report today, stating that currently LiDAR is mainly used in the automotive market for passenger cars and unmanned taxis, while in the industrial market it supports applications such as robotics, factory automation, and logistics.The report points out that driven by Level 3 and more advanced auto drive system system and logist...

    01-22
    翻訳を見る
  • Significant progress has been made in the manufacturing and measurement of EUV lithography light source collection mirrors

    Summary:To filter out infrared light from the driving light source in the extreme ultraviolet lithography (EUVL) light source system, a rectangular grating structure needs to be fabricated on the surface of the collection mirror. However, the collection mirror grating usually undergoes deformation during the manufacturing process, resulting in a decrease in filtering efficiency. The process errors...

    04-02
    翻訳を見る
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    翻訳を見る
  • Scientists develop photo activated glass for clean energy production

    Japanese and Swiss scientists have collaborated to develop glass that can generate electricity under light, which may pave the way for sustainable energy production. Researchers from Tokyo Institute of Technology and the Swiss Federal Institute of Technology in Lausanne used femtosecond lasers to etch circuits on glass surfaces, resulting in the unexpected generation of semiconductor crystals.The ...

    2024-03-11
    翻訳を見る