日本語

Silicon Valley giants compete for a new 3D printing space race track

821
2025-03-24 15:09:16
翻訳を見る

Recently, Eric Schmidt, former CEO of Google, will take over as CEO of Relativity Space, marking his first CEO position since leaving Google.
Relativity Space is known for producing rockets using unusual technologies, including 3D printers, automated robots, and artificial intelligence. In 2023, Relativity Space successfully launched the Terran 1 rocket, proving that its 3D printing technology can operate effectively.

 



When Schmidt joined Relativity Space, the company was preparing to launch the Terran R in 2026. The Terran R is a larger rocket than the startup's previous launches and will compete with Space X's Falcon 9 and Falcon Heavy rockets. According to The Times, in preparation for the first launch of Terran R, Relativity Space has signed nearly $3 billion in launch contracts with customers.

Now, Schmidt will become the CEO of Relativity Space at a critical moment in the company's history. He may provide funding and experience to rocket startups to help guide them through the launch of Terran R. In addition, Schmidt has a considerable network of contacts in Washington D.C., which may help to collaborate with government officials on future launches in relativistic space.

It is worth mentioning that recently Google co-founder Larry Peppa has also been exposed for secretly researching the use of AI 3D printing for airplanes. According to relevant reports, Larry Page funded a startup called Dynamomics, which is dedicated to exploring the use of 3D printing technology to manufacture aircraft components. Insiders revealed that Larry Page and the company's CTO are researching how to use artificial intelligence to optimize manufacturing processes.

Relativity Space, a space technology company headquartered in Los Angeles, USA, has been reconstructing the aerospace manufacturing system with revolutionary 3D printing technology since its establishment in 2015, becoming a new force for innovative development in the global commercial aerospace field. The company has achieved full process automation of rocket component production through its independently developed intelligent robot manufacturing platform, pioneering a new paradigm of "using artificial intelligence to build rockets".

According to publicly available company information, Relativity Space's mission is to accelerate human exploration of the universe and focus on developing reusable 3D printed launch vehicles. Its unique Stargate metal 3D printing system can simplify tens of thousands of traditional rocket components into less than a thousand integral parts, reducing the manufacturing cycle from the industry average of 18 months to 60 days and reducing material waste by over 90%. This disruptive technology provides a cost-effective solution for the global small and medium-sized satellite launch market.

In the milestone launch in March 2023, Relativity Space successfully completed the orbital stage test flight of the world's first fully 3D printed rocket, Terran 1. The rocket is 33.5 meters high and 85% of its structural components are 3D printed from aluminum alloy, verifying the engineering feasibility of additive manufacturing technology in the field of large-sized spacecraft. The company's latest developed "Terran R" heavy-duty reusable rocket has achieved 3D printing manufacturing of 95% of the rocket body components for the first time, with a carrying capacity of 20000 kilograms. It is planned to carry out a Mars exploration material transportation mission in 2026.

It is worth noting that Relativity Space has received over $1.5 billion in orders from agencies such as NASA and has established commercial partnerships with more than 30 satellite companies. Tim Ellis, the founder of the company, said, "We are building an industrial infrastructure from low Earth orbit to the surface of Mars, and plan to establish the first 3D printing manufacturing base on Mars in the next decade
Experts from the International Academy of Astronautics commented that the practice of Relativity Space marks the entry of aerospace manufacturing into the era of digital intelligence, and its technological roadmap has important reference significance for the development of commercial aerospace in China. Currently, more than 20 countries around the world have engaged in technological exchanges with it, and this model of reconstructing the aerospace industry chain through intelligent manufacturing is opening up new possibilities for human deep space exploration.

Source: Yangtze River Delta Laser Alliance

関連のおすすめ
  • By 2030, the global market size of medical laser fiber will reach 1.369 billion US dollars

    According to a recent report by Congic Business Intelligence, the global medical laser fiber market is expected to grow significantly at a compound annual growth rate of 6.9% from 2023 to 2030. This growth is attributed to the increasing popularity of minimally invasive surgery worldwide.The medical laser fiber market is expected to expand strongly, reaching $1.369 billion by 2030. The market is v...

    2023-10-27
    翻訳を見る
  • Singapore MetaOptics seeks to raise funds for the development of superlenses

    MetaOptics, a 2021 startup based in Singapore with expertise in metalenses and related optical components, is aiming to raise net proceeds of S$4 million (approximately US$3.1 million) by listing on the local “Catalist” stock exchange.Targeting emerging applications in smart phones, contactless 3D biometrics modules, tiny pocket projectors, lidar sensors, and augmented and virtual reality (AR/VR) ...

    09-03
    翻訳を見る
  • Advanced OPA enhances the energy of attosecond imaging ultra short pulses

    The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond ...

    2024-05-11
    翻訳を見る
  • New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

    Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published i...

    2023-10-13
    翻訳を見る
  • Significant breakthrough in intelligent spectral environment perception research at Xi'an Institute of Optics and Fine Mechanics

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in the field of intelligent spectral environmental perception. Relevant research results have been published in the top journal in the field of environmental science, Environmental Science&Technology (Nature Index, 5-Year IF: 11.7), and have been selected as cover papers....

    03-20
    翻訳を見る