日本語

Significant breakthrough in intelligent spectral environment perception research at Xi'an Institute of Optics and Fine Mechanics

838
2025-03-20 17:10:53
翻訳を見る

Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in the field of intelligent spectral environmental perception. Relevant research results have been published in the top journal in the field of environmental science, Environmental Science&Technology (Nature Index, 5-Year IF: 11.7), and have been selected as cover papers. The first author of the paper is Liu Jiacheng, and the corresponding authors are Yu Tao and Hu Bingliang. Xi'an Institute of Optics and Fine Mechanics is the first completion unit and communication unit. This is the first time that Xi'an Institute of Optics and Fine Mechanics has published an article in this journal, marking a new breakthrough in the research of intelligent spectral environment perception in the international academic field.

Spectroscopy is an important interdisciplinary field mainly involving physics and chemistry, which studies the interaction between 
electromagnetic waves and matter through spectroscopy. Detecting the absorption spectrum of water bodies can reflect the absorption characteristics of water molecules towards specific wavelengths of light, thereby quantitatively inverting water environmental quality parameters. The complex background interference of water bodies poses great challenges to high-precision quantitative inversion. Existing research mainly relies on data-driven machine learning models for quantitative inversion of water quality parameters, which is difficult to adapt to complex surface water scenarios with wide geographical distribution.

In response to the above challenges, the research team has introduced the Transformer architecture for spectral quantitative inversion of water quality parameters for the first time, and proposed the concept of Physicochemical Informed Learning to construct a quantitative inversion model for physical and chemical driven Transformers. This method embeds prior physical and chemical information into the spectral encoding process, and combines the global feature extraction capability of the Transformer architecture to improve the accuracy of complex surface water spectral quantitative inversion. The results show that this method exhibits excellent water quality parameter inversion ability in complex surface water scenarios with wide geographical distribution, providing a new theoretical basis and technical path for the application of intelligent spectroscopy technology in the environmental field.

 



Research methodology and process


Hu Bingliang and Yu Tao's team have conducted long-term research in high-resolution hyperspectral imaging remote sensing, fine spectral detection, and quantitative analysis. This research is an important achievement made by the team in benchmarking the country's efforts to promote the construction of a "Beautiful China". It is also highly recognized by the international academic community for the achievements in the field of intelligent spectral environment perception at Xi'an Institute of Optics and Fine Mechanics. It is also an important progress made by Xi'an Institute of Optics and Fine Mechanics in focusing on spectral imaging and fine spectral detection technology. The research work has been supported by the national key research and development plan, the Chinese Academy of Sciences pilot project (Class A) and other projects.

Source: opticsky

関連のおすすめ
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    翻訳を見る
  • German laser company Marvel Fusion recently raised 62.8 million euros in funding

    Recently, Marvel Fusion, a private German company dedicated to commercializing fusion energy through its own laser technology, announced that it has recently raised 62.8 million euros in Series B funding. This round of investors includes HV Capital, b2venture, Earlybird Venture Capital, Athos Venture, Primepulse, Plural Platform, and Deutsche Telekom. Meanwhile, Marvel Fusion has also received add...

    2024-10-12
    翻訳を見る
  • Innovative laser technology: a novel quantum cavity model for superradiance emission

    Quantum optics is a complex field where theoretical and experimental physicists collaborate to achieve breakthroughs in explaining subatomic level phenomena.Recently, Farokh Mivehvar from the University of Innsbruck used the most comprehensive model in quantum optics, the Dicke model, to study the interaction between two groups of atoms in a quantized field. This new study makes it possible to obs...

    2024-03-16
    翻訳を見る
  • SuperLight Launches "First" Portable Broadband Laser

    Supercontinuum spectrum laser developer SuperLight Photonics has launched the so-called "first revolutionary portable broadband laser" - SLP-1000. Its wide spectral output provides a light source for industrial and medical imaging applications as well as spectroscopy.Supercontinuum spectrum lasers, also known as broadband lasers, provide high bandwidth while maintaining high coherence and low nois...

    2023-11-02
    翻訳を見る
  • Vast's Haven-1 program has become the world's first commercial space station equipped with SpaceX Starlink lasers

    Vast's Haven-1 program will become the world's first commercial space station, equipped with SpaceX's Starlink laser terminal, providing connections to its crew users, internal payload racks, external cameras, and instruments at speeds of gigabits per second and low latency.Max Haot, CEO of Vast, said: "If you need to provide high-speed, low latency, and continuous Internet connection on the orbit...

    2024-04-10
    翻訳を見る