日本語

Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical combs to become a high-performance laser

834
2023-09-27 14:13:41
翻訳を見る

Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical microcombiners, making them a high-performance laser. This breakthrough will have a wide impact in fields such as space science and healthcare.

The two rings in the figure are micro resonators, which play a crucial role in the implementation of efficient micro combs.

The importance of micro comb technology
The optical micro comb technology has significant scientific and technological application potential. It can be used for high-precision frequency measurement and is considered one of the most disruptive technologies since the birth of lasers. In short, a micro comb is like a ruler made of light, which can accurately measure the frequency of light.

Its working principle is based on the laser sending photons, which circulate in the micro resonator, causing light to be divided into multiple precise frequencies. These frequencies can be accurately positioned against each other, just like scales on a ruler. Therefore, a micro comb can create a light source containing hundreds or even thousands of frequencies, similar to a laser beam emitted uniformly.

Due to the fact that almost all optical measurements are related to the frequency of light, micro comb technology has a wide range of applications, from instruments used to calibrate and measure light year distance signals in space science to tracking health status through air analysis in healthcare.

Key breakthroughs in solving efficiency issues
However, the previous micro comb technology had a fundamental problem, which was its low efficiency. The energy conversion efficiency between light and micro combs is not high, resulting in only a small portion of power available in the laser beam.

Researchers have made breakthrough progress on this issue. By using two micro resonators, they successfully increased the power of the micro comb laser beam, increasing the efficiency from about 1% to over 50%. This method utilizes the interaction between two micro resonators, where one resonator couples light from the laser with the other resonator, similar to impedance matching in electronic circuits.

Prospects and Applications
The method described in this study has opened up a new field for the application of high-performance lasers and has been patented. Researchers have also established a start-up company, Iloomina AB, to push this technology to a wider market.

The new micro combs have enormous transformative potential as they enable high-performance laser technology to be used in more markets. For example, frequency combs can be used for autonomous LiDAR modules, GPS satellites, and environmental sensing drones, as well as supporting bandwidth intensive artificial intelligence applications in data centers. This breakthrough will accelerate the adoption of high-performance laser technology in various fields, including healthcare and space science.

Source: China Optical Journal Network

関連のおすすめ
  • The University of California has developed a pioneering chip that can simultaneously carry lasers and photonic waveguides

    A team of computer and electrical engineers at UC Santa Barbara, in collaboration with several colleagues at Caltech and another colleague at Anello Photonics, has developed a first-of-its-kind chip that can carry both laser and photonic waveguides. In a paper published in the journal Nature, the team describes how they made the chip and how it worked during testing.With the advent of integrated c...

    2023-08-10
    翻訳を見る
  • 2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics

    2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics.The company plans to showcase this technology at the large-scale technology trade show CES 2024 in Las Vegas next week.This company, headquartered in Cambridge, Massachusetts, stated that it has created the world's leading high-resolution fisheye sensor based on optical superlens technology. This technol...

    2024-01-05
    翻訳を見る
  • Chinese researchers enhance perovskite lasers by suppressing energy loss

    Limiting Auger recombination enables “record” quasi-continuous wave laser output.For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that...

    08-25
    翻訳を見る
  • 253 million US dollars! This Canadian medical fiber optic sensor manufacturer will be acquired

    Recently, Haemantics Corporation, which focuses on providing innovative medical solutions with proprietary optical technology, announced that the company has reached a final agreement. According to the agreement, Haemonics will acquire all outstanding shares of Canadian fiber optic sensor manufacturer OpSens for CAD 2.90 per share.This is an all cash transaction with a fully diluted equity value o...

    2023-10-18
    翻訳を見る
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    翻訳を見る