日本語

The Science Island team has made new progress in detecting atmospheric formaldehyde

355
2023-09-21 14:34:23
翻訳を見る

Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on compact spherical mirror optical multi-path cell".

Formaldehyde is an important atmospheric pollutant, mainly originating from industrial processes, chemical products, and motor vehicle emissions. In atmospheric chemistry, formaldehyde is a key intermediate product in the oxidative degradation process of volatile organic compounds (VOCs) emitted by humans and nature; In indoor environments, excessive formaldehyde levels are an important cause of cancer, especially leukemia. Therefore, real-time monitoring of atmospheric formaldehyde is of great significance for the study of atmospheric pollution chemistry and health effects.

In 2019, researcher Zhao Weixiong and assistant researcher Fang Bo from An Guang Institute team developed a TDLAS device for actual atmospheric formaldehyde measurement using a long path new spherical mirror cell combined with mid infrared tunable laser absorption spectroscopy (TDLAS) technology. They also participated in field observations in the Guangdong Hong Kong Macao Greater Bay Area and other areas.

Based on this research, a compact optical multi-pass cell with high optical path to volume ratio (optical path 50.6 m, volume~350 mL) was developed to meet the miniaturization, fast response, and high sensitivity development needs of TDLAS formaldehyde measurement devices. Its gas displacement response time is less than 1 second. Combined with fast background subtraction technology, this device can obtain 650 pptv in 1 second of integration time( α Min~2.3 × Detection limit of 10-9 cm-1). This research work laid the foundation for the team to further develop portable handheld/vehicle formaldehyde detection equipment.

This work has been supported by the National Natural Science Foundation of China, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, and the President's Fund of Hefei Research Institute.

Compact spherical mirror optical multi pass cell with high optical path volume ratio


Structure diagram of formaldehyde detection device


Fast background subtraction and detection limit


Source: Hefei Institute of Physical Sciences, Chinese Academy of Sciences

関連のおすすめ
  • Bodor Laser: Laser Cutters Rank First in Global Sales for Six Consecutive Years

    On February 27, at Bodor Laser's global headquarters base in Licheng District, Jinan City, three automated production lines were operating at full capacity, struggling to meet the overwhelming demand. Lu Guohao, Secretary of the Board and Director of the President's Office at Bodor Laser, revealed that the company's laser cutter shipments exceeded 8,000 units in 2024, securing the top spot in glob...

    03-10
    翻訳を見る
  • DataLase launches a new laser active transparent to white coating

    Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. Thi...

    2024-03-09
    翻訳を見る
  • The carbon dioxide laser market is expected to reach 7.1 billion US dollars by 2033

    The carbon dioxide laser market will show significant elasticity and sustained growth in the next decade, with a compound annual growth rate of 3.6% expected from 2023 to 2033.This impressive prediction indicates the persistent demand and expanding application of carbon dioxide lasers in various industries.By the end of 2033, the market is expected to reach a significant valuation of $7.1 billion,...

    2023-10-27
    翻訳を見る
  • Three core processes of laser soldering support the development of PCB electronics industry

    In the field of modern electronic manufacturing, PCB (printed circuit board) serves as the carrier of electronic components. In its manufacturing process, laser soldering technology has become a key link in PCB electronic manufacturing due to its advantages of high precision, high efficiency, and low thermal impact. This article will explore the application of laser soldering technology and its ma...

    2024-04-15
    翻訳を見る
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    翻訳を見る