日本語

Lithuanian and Japanese researchers develop silver nanolaser

667
2024-12-24 14:21:41
翻訳を見る

Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.

Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research team is confident in this.

This nanolaser has broad potential applications in early medical diagnosis, data communication, and security technology. At the same time, it is also expected to become an important tool for studying the interaction between light and matter. The amplification and generation of laser light vary depending on the application, determining the color of radiation and the quality of the laser beam.

According to Juod NAS from KTU, a co-author of the invention, "Nanolasers use structures that are one million times smaller than millimeters to generate and amplify light, and their laser radiation is generated in extremely small volumes of materials.

Although research and development of nanolasers have been ongoing for some time, the versions developed by KTU and its Japanese partners have unique manufacturing processes. They used silver nanocubes arranged neatly on the surface and filled with optically active materials to create the mechanisms required for amplifying light and generating laser effects.

As extremely small single crystal silver particles, silver nanocubes possess excellent optical properties and are the core components of our nanolaser, "said Juod NAS, a researcher at KTU Institute of Materials Science.

These nanocubes were synthesized using a unique process invented by KTU partners in Japan, ensuring their precise shape and quality. Subsequently, using nanoparticle self-assembly technology, these cubes were arranged into a two-dimensional structure. During this process, particles naturally arrange from the liquid medium onto the pre designed template.

When the template parameters match the optical properties of the nanocubes, a unique phenomenon called surface lattice resonance occurs, effectively generating light in the optically active medium.

Unlike traditional lasers that generate this phenomenon using mirrors, the KTU team's nanolaser utilizes a surface with nanoparticles. When silver nanocubes are arranged in a periodic pattern, light is captured by them. This process is similar to the mirror hall of an amusement park, but here the mirror is a nanocube and the 'visitor' is light, "Juod NAS metaphorically said.

These captured lights accumulate continuously until they eventually cross the energy threshold of stimulated radiation, producing a strong beam of light with a specific color and direction. The term laser is an abbreviation for stimulated emission of light, which describes this process.

By using high-quality and easily producible silver nanocubes, this laser can operate at record low energy, providing the possibility for large-scale production. Juod NAS pointed out that "chemically synthesized silver nanocubes can be produced in large quantities, and their high quality allows us to use nanoparticle self-assembly technology. Even if the arrangement is not perfect, their properties can compensate for this deficiency.

However, in the early stages of the project, although the simplicity of the method should have been a concern, Lithuanian research funding agencies were skeptical. Some skeptics question whether our simple method can create sufficiently high-quality nanolaser structures, "said Professor Sigitas Tamulevicius from KTU Institute of Materials Science.

Nevertheless, the KTU team firmly believes in the quality of their nanolaser and has successfully secured funding from an international organization. Juod NAS explained, "After extensive work and experimentation, we have demonstrated that using high-quality nanoparticles can achieve effective results even if the array is not perfect.

Source: OFweek

関連のおすすめ
  • Aerotech launches new micro hexapod sports platform

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the HexGen HEX150-125HL miniature hexapod motion platform, a six degree of freedom (DOF) precision positioning system. This compact and cost-effective hexapod sports platform has a base diameter of 150 millimeters and a nominal height of 125 millimeters. It can achieve a minimum incremental movement of up...

    01-14
    翻訳を見る
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    翻訳を見る
  • GeoCue introduces three new TrueView 3D imaging systems

    Earlier this month, GeoCue, a liDAR mapping hardware and software provider, announced the launch of three new products for its TrueView 3D imaging system. These new systems combine laser scanning and high-resolution imaging, including the TV625, TV680 and TV680LR. All three systems are NDAA-compliant.All three systems are designed to be used in conjunction with drones, and the company note...

    2023-08-04
    翻訳を見る
  • Tiedra Famaceutica uses Macsa ID's SPA2 CB laser marking system

    Tiedra Famaceutica was founded by members of the Tiedra family in 2003 and is a manufacturer of contact lenses, health and ophthalmic products, as well as diagnostic instruments used in optometry and ophthalmic clinics.Before installing the SPA2 CB laser model for Macsa id, Tiedra used a pantograph, which is a quadrilateral system composed of hinged rods. This manual process provides limited marki...

    2023-12-14
    翻訳を見る
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    翻訳を見る