日本語

Laser communication is expected to completely change optical links

432
2023-09-20 15:07:39
翻訳を見る

Laser technology is becoming a game changer in the field of satellite communication (SATCOM), capable of creating ultra secure networks that can transmit large amounts of data at unprecedented speeds through satellite networks and constellations.

With continuous progress, the industry is ready for growth and collaboration, seizing the untapped potential of disconnected populations. The ability to handle the surge in data volume is a key advantage provided by laser communication, providing an important value proposition.

Despite the challenges, laser communication has broad prospects in defense and space applications, as US government agencies continue to embrace the prospects of laser communication and invest in further development to enhance its use.

Communication has many advantages: precise and targeted beams, less interference, and significant bandwidth. He is also optimistic about the prospects of laser communication.

The prospects for satellite communication and laser communication are very bright, "Huttenhoff said. In the future, secure inter satellite links and air to ground communication will utilize this technology. Although spectrum management is still required with the surge of this capability, this management should be much easier due to the narrow beam.

Widely used, such as inter satellite communication and satellite to ground connectivity. With the continuous growth of the number of orbiting satellites, space-based laser communication is becoming an important participant in satellite communication systems.

The Revolution of Satellite Communication
A study conducted by the Maharashtra Strait Research Center in India shows that the global space-based laser communication market (mainly used for commercial applications) is worth approximately $1.13 billion by 2022 and is expected to quadruple by 2031, with an annual growth rate of nearly 26%. It is titled "The Space-based Laser Communication Market".

Space-based laser communication has become a breakthrough solution for data transmission in remote and challenging locations. This technology provides a wide range of applications, such as inter satellite communication and satellite to ground connectivity. With the continuous growth of the number of orbiting satellites, space-based laser communication is becoming an important participant in satellite communication systems.

Although investors are cautious, they are closely monitoring the progress of the industry to compete with major commercial operators such as Starlink and OneWeb. The extensive customer base waiting for connections provides profitable opportunities for growth and collaboration. With laser communication providing faster speed, higher security, and higher efficiency, it is expected to reshape the landscape of satellite communication.

Laser communication will redefine secure and efficient data transmission not only in the commercial market, but also in the defense and government markets. Through technological progress, continuously improving affordability, and rapidly expanding customer base, laser technology is heralding a new era of satellite communication. As researchers continue to improve the efficiency, power output, and wavelength stability of laser diodes, the performance and reliability of laser communication systems will reach new heights.

In the international community, standardization work led by organizations such as the International Telecommunication Union (ITU) and other industry alliances is also underway. The establishment of universal standards ensures the interoperability and widespread adoption of laser communication systems. This enables seamless integration with existing RF infrastructure, creating hybrid systems that provide enhanced reliability and performance.

Although atmospheric challenges affect laser communication, innovative technologies such as adaptive optics, beam control, and error correction algorithms are still being explored to mitigate these impacts. Overcoming these obstacles is crucial for the practical implementation of laser communication.

It can be said that laser technology is completely transforming the satellite communication industry. With its unparalleled functionality, laser communication provides faster speed, enhanced security, and higher efficiency than today. As the industry continues to mature, cooperation and partnerships will help drive innovation and shape the future of satellite communication.

Tim Dare is an outstanding engineer and technical director at Booz Allen Hamilton, a technology research company located in McLean, Virginia. Dare stated that the prospects for laser optical communication are bright.

A Bright Future
Those who promote this technology are focused on utilizing the advantages of laser optical communication over radio frequency communication, such as increased bandwidth, small beam size, difficulty in interception/detection or interference, and the ability to utilize largely unregulated portions of the spectrum, "Dare said. These advantages provide prospects for laser communication. According to multiple market analysis studies, the laser communication market is expected to grow from hundreds of millions of dollars to billions of dollars by 2030.

The typical use of laser communication is in space. Traditionally, laser communication has been developed and used for space-based applications, such as satellite to satellite and ground to satellite data transmission, due to the impact of the atmosphere on laser communication in land, ocean, and air domains, including bandwidth, pointing, capture, and tracking, as well as communication resilience under various atmospheric conditions, "Dare continued.

Dare said, "Technology developers are now focusing their investments on improving the practical applications of laser communication in areas such as bandwidth, distance, and resilience under various atmospheric conditions." Currently, the bandwidth is nominally 1 to 10 gigabits per second, and in the future it will reach hundreds of gigabits per second. For ground to ground applications, the current distance is approximately 1 kilometer to tens of kilometers, and it will exceed 50 kilometers in the future.

Kevin Huttenhoff is the Senior Manager of Space Data Transmission in the Lockheed Martin Space Systems Department in Denver. He also emphasized that laser communication has many advantages: precise and targeted beams, less interference, and significant bandwidth. He is also optimistic about the prospects of laser communication.

The prospects for satellite communication and laser communication are very bright, "Huttenhoff said. Future secure inter satellite links and air to ground communication will utilize this technology. Although spectrum management is still required with the surge in this capability, due to the narrow beam, this management should be much easier.

Source: Laser Network


関連のおすすめ
  • Assisting Gas Mixing to Promote the Development of Fiber Laser Technology

    Just ten years ago, fiber laser cutting machines were considered experts in thin plates. The stores quickly realized that they had to invest in them to compete, at least by reducing their instrument materials. For high-quality sheet metal cutting, CO2 laser is still the way to go. Of course, fiber lasers can cut thicker blanks, but the quality is not very good, and their speed advantage almost dis...

    2024-01-11
    翻訳を見る
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    翻訳を見る
  • Important Discovery in Aluminum Alloy Laser Coaxial Fusion Additive Manufacturing

    Aluminum alloy has unique advantages such as lightweight, high strength, and excellent corrosion resistance, and is highly favored in the aerospace manufacturing field. Laser Coaxial Fusion Additive Manufacturing (LCWAM) adopts beam shaping technology, which uses wire as the deposition material to melt and stack layer by layer. Compared to traditional side axis wire feeding technology, laser coaxi...

    2024-04-29
    翻訳を見る
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    翻訳を見る
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    翻訳を見る