日本語

TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

358
2023-08-21 14:14:40
翻訳を見る

TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.

This upgrade is part of a collaboration between the University of Tel Aviv and the University of Texas at Austin, aimed at jointly developing the fundamental elements of laser plasma interaction, advancing the science and technology of compact accelerator systems and advanced light sources, with the goal of making these tools widely applicable to a wide range of end users and industries.

The upgraded UT 3 has almost twice the energy of its predecessor. This upgrade was jointly completed by personnel from TAU Systems and UT Austin, with the necessary components coming from Thales Laser. TAU has successfully achieved laser driven electronic acceleration in its new beam line design, demonstrating the new potential of the facility.

The system will now be used to develop compact new laser tail field accelerators, as well as EUV and X-ray light sources, for use in fields such as semiconductor industry, materials science, battery technology, medical imaging, etc.

Bjorn Manuel Hegelich, CEO of TAU Systems and Professor of UT Physics, said of the new features of UT 3, "After successfully completing this important UT 3 upgrade, we look forward to advancing the engineering frontier of laser driven particle accelerators. It will enable us to develop new imaging capabilities for both internal and external users of UT.

Professor Mike Downer, an outstanding physics professor at the University of Texas at Austin, also expressed the same view. He said, "The new research capabilities brought by this upgrade are exciting, and we look forward to further developing compact electron accelerators and 21st century X-ray sources.

Christine Dixon Thiessing, Vice President of the University of Texas at Austin, responsible for exploring influence, commented on the successful partnership between the university and TAU Systems, stating, "This successful project is a great example of public-private partnerships between the University of Texas at Austin and local cutting-edge industries, and also a great success story for a derivative company of the University of Texas at Austin.

The collaboration between TAU Systems and UT Austin highlights the importance of public-private partnerships in advancing scientific research and accelerating innovation.

This upgrade represents another important step in the commercial application of plasma tail field accelerators. TAU Systems plans to install a 100 times more powerful system at its recently acquired office in San Diego by the end of this year. The opening of this service center will create unprecedented opportunities for researchers in multiple fields, especially in the semiconductor manufacturing field, by exploring and measuring the 3D structure of semiconductors. The service center will also allow electric vehicle battery developers to conduct comprehensive research on battery charging and discharging.

Source: Laser Network

関連のおすすめ
  • Japan and Germany jointly develop ultra high speed laser material deposition technology

    Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes o...

    2024-10-25
    翻訳を見る
  • Researchers use lasers to measure and manipulate magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-03-05
    翻訳を見る
  • Laser photonics helps simplify maintenance processes in the mining industry

    Laser Photonics Corporation (LPC) is a leading global developer of industrial laser systems for cleaning and other material processing applications, emphasizing the critical applications of its industrial laser cleaning systems in the mining industry.Laser Photonics provides a user-friendly, ethical, cost-effective, and time-saving solution for professionals in the mining industry to maintain heav...

    2024-06-14
    翻訳を見る
  • Dazu Photonics launched the third generation of high power fiber laser successfully increased the product power to 50kW

    In recent years, with the vigorous development of new energy and other industries, the improvement of environmental awareness and the increasing demand for new applications, the demand for fiber lasers in intelligent manufacturing is increasing, and the demand for power is also increasing, and high-power fiber lasers can significantly improve production efficiency and are widely sought after by th...

    2023-09-02
    翻訳を見る
  • Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

    A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use...

    2024-02-19
    翻訳を見る