日本語

Aston receives £ 600000 to address the surge in energy needed for data centers

435
2025-10-24 10:47:16
翻訳を見る

A researcher from Aston University in Birmingham, UK, has received a grant of £ 625000 (approximately $850000) to help address the energy surge required for data centers.

The UK’s Royal Academy of Engineering has announced the latest recipients of its fellowships which support engineers to solve a wide range of society’s challenges. Data center energy demand is described as “one of today’s most pressing challenges”.

Dr Aleksandr Donodin who works in the Aston Institute of Photonic Technologies (AIPT) is one of just 12 researchers to be granted funding this autumn. He will be examining fiber-optic networks to find solutions to the increasing power demands of data centers.

The International Energy Agency (IEA) works with governments and industry to safeguard energy for the future and predicts that from 2024 to 2030 data centers energy consumption will grow by around 15% per year, more than four times faster than the growth of total electricity use from all other sectors.

 

Dr. Aleksandr Donodin


Bismuth-doped fiber amplifiers

Donodin will be exploring the use of the networks and bringing together bismuth-doped fiber amplifiers which have tiny amounts of bismuth added to them, and optical frequency combs which are used to precisely measure and control light. It will be the first time this combination is explored in detail and if successful “could cut power consumption in optical networks by 30–50% per bit,” says the Aston announcement. It will also enable O-band range of light wavelengths to reach transmission capacities beyond 200 terabytes per second.

Donodin said, “I am delighted to receive this fellowship for my research which is called Next Generation of Energy-efficient Optical Regional and Data Center Connections. Beyond its technical ambitions, the project strengthens Aston University’s role as a hub for sustainable, next-generation optical networks - reinforcing the UK’s leadership in critical digital technologies.”

He added, “To translate the technology to real world, the project will connect everyone from the top to the bottom of the telecom supply chain. We will work closely with device suppliers like Lightera and Pilot Photonics, draw on the expertise of equipment manufacturers like Coherent and Nokia Bell Labs. And finally, we will collaborate with Japan-based telecom operator KDDI on implementing the developed technologies for real world systems.

The research fellowships program is funded by the UK Government’s Department for Science, Innovation and Technology and supports early-career researchers to become future research leaders in engineering. The fellowships are designed to advance excellence in engineering by providing funding for five years to allow awardees the freedom to concentrate on basic research in any field of engineering. Amounts awarded are up to £625,000 over five years.

Professor Jonathan Cooper FREng FRSE, chair of the Academy’s research fellowships steering group, commented: “This cohort will work on ambitious programs of research that address many of today’s societal challenges, including those around healthcare and an ageing population as well as the environment, sustainability and net-zero”

Source: optics.org

関連のおすすめ
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    翻訳を見る
  • Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

    A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use...

    2024-02-19
    翻訳を見る
  • Japanese and Australian teams use lasers to search for space debris the size of peanuts

    It is reported that Japanese startup EX Fusion will soon reach an agreement with Australian space contractor Electric Optical Systems to conduct on-site testing of technology for tracking small space debris orbiting Earth.Image source: LeolabsEX Fusion, headquartered in Osaka, specializes in the laser business with the goal of achieving commercial laser fusion reactors. So far, nuclear fusion rese...

    2023-10-10
    翻訳を見る
  • GZTECH Global Headquarters and Advanced Light Source R&D and Production Base Launch Construction

    On June 10th, the construction of GZTECH's global headquarters and advanced light source research and development production base was launched. Rendering of GZTECH Global Headquarters and Advanced Light Source R&D and Production Base The project is located in Donghu Comprehensive Bonded Zone, with a total construction area of approximately 40000 square meters. It will integrate GZTECH's i...

    06-13
    翻訳を見る
  • Lockheed Martin announces expansion of 16000 square feet 3D printing center

    Recently, US military industry giant Lockheed Martin announced that it will significantly increase its additive manufacturing capabilities and expand its factory in Texas. The expansion project includes approximately 16000 square feet of dedicated space for 3D printing technology, and the addition of some of the largest large format multi laser printers in the space (it is worth noting that Lockhe...

    2024-12-02
    翻訳を見る