日本語

SPIE Optics and Photonics 2025: Kyle Myers from Puente elected as SPIE Chair

846
2025-08-08 14:26:09
翻訳を見る

The founder and principal of Puente Solutions Kyle J. Myers has been elected to serve as the 2026 Vice President of SPIE, the international society for optics and photonics. With her election, Myers joins the SPIE presidential chain. She will serve as president-elect in 2027, and as the Society’s president in 2028.

 



Newly-elected: Myers, McNally, Rubinsztein-Dunlop, Wade, Medicus, and Erdmann


The 2025 SPIE President Peter de Groot, Zygo Corp. scientist emeritus, made the announcement along with other SPIE election results at this year’s Annual General Meeting of the Society on 5 August, during SPIE Optics + Photonics, in San Diego. Terms begin on 1 January 2026.

Myers, founder and principal at Puente Solutions, is also currently a fellow at the Hagler Institute for Advanced Study at Texas A&M University. Her areas of technical research across her career in government, industry, and academia have included medical imaging and biomedical optics; signal processing and AI/ML; vision science and perception; and technical translation from ideation to market authorization.

From 1987 until 2021, Myers worked at the FDA’s Center for Devices and Radiological Health; her final role there was as Director of the Division of Imaging, Diagnostics, and Software Reliability.

An SPIE Fellow, Myers was the recipient of the 2024 SPIE Harrison H. Barrett Award in Medical Imaging, and a 2006 recipient of the Joseph W. Goodman Book Writing Award. She sits on the Society’s Strategic Planning Committee and its Publications Committee. From 2018-2023, she served on the SPIE Board of Directors.

She has participated as an SPIE Awards Program Chair, an associate editor for the Journal of Medical Imaging, and, from 1996-2005, as part of the program committee for the Image Processing Conference at SPIE Medical Imaging. Myers is currently on the program committee for the Image Perception, Observer Performance, and Technology Assessment conference at SPIE Medical Imaging. She is also a fellow of AAPM, AIMBE, and Optica, and a member of the National Academy of Engineering.

Myers was featured in the 2014 SPIE Women in Optics Planner where she stated: “I have devoted my career to advancing approaches for evaluation of medical imaging devices from a subjective practice to an objective and quantitative science; my lab develops methods for evaluating novel medical imaging devices and provides independent, objective data regarding device performance.”
“This is a type of lab science that is not done elsewhere. It is extremely rewarding to have a research job that is concretely assisting in getting new medical products to patients as quickly as possible, based on solid scientific evidence of their benefits.”

“Through SPIE we are working for more than the advancement of optics and photonics technologies — we are working for the betterment of the human condition,” said Myers. “I look forward to serving SPIE as we work together to do even more to educate, empower, grow, and support optics and photonics professionals around the world.”

Other SPIE electees

Alongside Myers, University of Rochester Professor Julie Bentley will serve as the 2026 SPIE President while Cather Simpson of the University of Auckland and Orbis Diagnostics, will serve as President-Elect. Jim McNally, CEO of StratTHNK Associates, was elected to serve as the 2026 SPIE Secretary/Treasurer.

The following newly-elected Society Directors will serve three-year terms from 2026-2028:

Halina Rubinsztein-Dunlop, professor of physics at the University of Queensland and deputy director of the Australian Research Council’s Center of Excellence in Quantum Biotechnology.
Jessica Wade, research fellow and lecturer at Imperial College London.
Kate Medicus, CEO and owner of Ruda Optical.
Rainer Erdmann, CEO and founder of PicoQuant.

The SPIE nominating committee accepts recommendations for the election slate on an ongoing basis. Directors, who serve a three-year term, are expected to attend and participate in three board meetings each year.

Source: optics.org

関連のおすすめ
  • What are the "unique secrets" of each family in terms of breaking the game and high reaction materials?

    Laser is considered a sharp sword that cuts iron like mud, but even sharper swords can have tricky moments. For example, in certain scenarios, there are materials with higher reflectivity, such as silver, copper, etc., known as "high reflection materials". High reflective materials have a low absorption rate for lasers, making them difficult to process and potentially causing equipment failure or ...

    2023-11-06
    翻訳を見る
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    翻訳を見る
  • The Future of Data Center Communication: Quantum Dot Semiconductor Comb Laser

    In the constantly evolving field of technology and data communication, researchers have made significant breakthroughs: developing a continuous wave O-band quantum dot semiconductor comb laser for wavelength division multiplexing optical interconnection. With its impressive performance characteristics, this development is expected to completely change the way we manage and transmit data, especiall...

    2024-02-21
    翻訳を見る
  • Using laser controlled filaments in vanadium dioxide to enhance neural morphology calculations

    In a new "Progress in Science" study, scientists from the University of Science and Technology of China have developed a dynamic network structure for neural morphology calculations using laser controlled conductive wires.Neuromorphic computing is an emerging research field that draws inspiration from the human brain to create efficient and intelligent computer systems. The core of neuromorphic co...

    2023-10-13
    翻訳を見る
  • Gas reduction technology of fiber laser helps to improve the cutting quality of low-carbon steel

    The Mitsubishi GX-F Advanced series of artificial intelligence enabled fiber lasers now use patented gas and burr reduction technology to help improve cutting quality while reducing gas consumption when cutting low-carbon steel.Mitsubishi Laser's proprietary Agr Mix nozzle technology does not require an external mixing tank or high-pressure oxygen. The combination of low-pressure air and nitrogen ...

    2024-02-14
    翻訳を見る