Italiano

Overview of Inconel 939 Alloy Parts Developed by Additive Manufacturing Process

574
2024-12-10 12:00:28
Vedi traduzione

The related paper was published in Heliyon under the title "A systematic review of Inconel 939 alloy parts development via additive manufacturing process".

IN939 is a modern nickel based high-temperature alloy that can work continuously at high temperatures due to its excellent fatigue resistance, creep resistance, and corrosion resistance. The unique performance of IN939 is related to the composition of the alloy and specific post-treatment processes (such as solution treatment and aging treatment), resulting in features such as γ 'residues and MC and M23C6 carbides. This also includes the lack of eutectic and primary melting phases. For this alloy, the main component development is carried out through the powder bed melting process using a laser powder bed melting machine. Meanwhile, a separate study emphasized the synthesis of EB-PBF devices. The additive manufacturing process of these alloys is hindered by machine parameters, which have been found to be unable to obtain fully dense structures with the required properties alone. The purpose of these parameters is to improve its core performance while minimizing defects related to powder metallurgy processes, such as porosity, harmful precipitation, grain anisotropy, etc. This study aims to provide an overview of research progress related to IN939, with a clear focus on benchmarks achieved through additive manufacturing technology. Researchers discussed the work done in this field, compared the results of different studies, and identified gaps in current research. Through these works, researchers aim to gain a comprehensive understanding of the potential of IN939 and its applications in extreme environments.



Figure 1. Main aspects of developing IN939 components.

 


Figure 2. Microstructure of the casting sample.


Figure 3. Microstructure of the sample annealed at 1100 ℃ for 4 hours and then water quenched.


Figure 4. Main categories and software usage of additive manufacturing.


Figure 5. Simple schematic diagram of selective laser melting process for metal/alloy parts.


Figure 6. Schematic diagram of electron beam melting process.


Figure 7. Schematic diagram of direct energy deposition through (a) powder material feeding and (b) metal wire material feeding.


Figure 8. Schematic diagram of metal adhesive spraying process.


Figure 9. Fracture surfaces of (a) undisturbed specimen, (b) LTH specimen, (c) HTH specimen, and (d) cast LTH specimen subjected to creep rupture at 816 ℃/250 MPa.


Figure 10. Optical image of partially recast layer of the sample.


Figure 11. Scanning electron microscopy images of SLM samples (a, b) after aging without solution treatment, (c) after solution treatment+aging.


Figure 12. a, b) Cut the pit thickness and recast area of the sample. (c) Optical microscope images of the recast layer and HAZ area of CFG and (d) wire EDM methods.


Figure 13. Scanning electron microscopy microstructure images of the sample at different heights (b, c) 40mm, (d, e) 30mm, (f, g) 20mm, and (h, i) 10mm along the molding direction.


Inconel 939 additive manufacturing has been explored for advanced applications, which has led to further exploration of the impact of components and process parameters on this age hardening alloy. However, finished IN939 samples typically exhibit residual thermal strain, stress, and porosity, which may have a negative impact on their performance. To address these challenges, post-processing is considered crucial in achieving sample homogenization, controlling its microstructure, and reducing porosity. Although these processing methods have many benefits, they often require multiple steps and complex loops to form the required stages. These advances in AM and post-processing technology are expected to broaden the application range of IN939 parts and improve their performance in extreme environments. However, in addition to optimizing the microstructure and mechanical properties of IN939 parts, the performance of IN939 parts still needs to be further improved. Researchers can develop more targeted methods to optimize the performance of IN939 components and expand their potential applications by understanding their behavior in extreme environments rather than current developments. Combining hot isostatic pressing with optimized parameters at different stages of the multi-step heat treatment process can result in components with uniform microstructure and excellent isotropic mechanical properties.

Source: Yangtze River Delta Laser Alliance

Raccomandazioni correlate
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    Vedi traduzione
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    2024-08-22
    Vedi traduzione
  • Scientists Developing New Low Cost Manufacturing Technologies for High Resolution Optical Components

    Scientists from Leibniz University in Hanover have pioneered the development of a new manufacturing technology - UV LED based microscopy projection lithography. This technology is expected to completely change the manufacturing method of optical components, providing high resolution at lower cost and ease of use. The MPP system utilizes the power of UV LED light sources to transcribe the structura...

    2024-01-06
    Vedi traduzione
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    Vedi traduzione
  • High precision laser linkage platform to help precision processing

    With the trend of industrial intelligence and precision processing, the demand for laser precision processing in precision 3C industry, machinery and equipment, new energy vehicles and other industries has developed rapidly, making the application of laser processing technology in the industrial field more comprehensive promotion.Due to the inherent nonlinear characteristics between optics and sca...

    2023-09-11
    Vedi traduzione