Italiano

Coherent Axon laser won the 2023 Business Innovation Award from the British Physical Society

952
2023-11-03 13:56:53
Vedi traduzione

One of the laser leaders in the field of life sciences, Coherent Gao Yi (New York Stock Exchange: COHR), recently announced that its Axon laser won the 2023 Business Innovation Award at the awards ceremony held by the British Physical Society on October 30th.

Dr. Vincent D. Mattera, Jr., Chairman and CEO of Coherent, stated that, Coherent, especially our team at the Center for Excellence in Ultrafast Laser Technology in Glasgow, UK, is proud to receive this outstanding innovation award from the British Physical Society. For clinicians exploring new avenues in diagnostic medicine and neuroscientists studying the mechanism and treatment of neurodegenerative diseases, ultrafast lasers are a promising new tool for the future.

As early as 2013, the Coherent Chameleon laser won a prize from the British Physical Society. The Chameleon laser brings advanced laser imaging technology into the biology laboratory.

Nowadays, Axon lasers not only represent the development of laser technology over the past decade, but also represent Coherent's consistent support for biomedical research progress. The Axon series is a fixed wavelength, compact structure, and cost-effective femtosecond laser oscillator widely used in life sciences, imaging, detection, and nanoprocessing.

Since 2012, the British Physical Society Business Awards have recognized over 70 physics driven companies in different fields, celebrating their achievements and recognizing the important role played by physics and physicists in creating employment and achieving growth by driving innovation to meet today's challenges.

Source: Coherent Gaoyi Laser

Raccomandazioni correlate
  • Aerosol jet printing can completely change the manufacturing of microfluidic devices

    Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various ...

    2024-02-02
    Vedi traduzione
  • Peking University has made significant progress in the field of photonic chip clocks

    Recently, the research team of Chang Lin from the School of Electronics of Peking University and the research team of Li Wangzhe from the Aerospace Information Research Institute of the Chinese Academy of Sciences published a research article entitled "Microcomb synchronized optoelectronics" online in Nature Electronics, realizing the application of photonic chip clocks in information systems for ...

    02-28
    Vedi traduzione
  • Sivers Photonics has received a $1 million order for advanced optical sensing products in fields such as LiDAR and industrial applications

    Sivers Semiconductors AB announced that its subsidiary Sivers Photonics has received a new order worth $1 million for advanced optical sensing products from three customers in the fields of LiDAR, Medical, and Industrial.In the first half of the fourth quarter of 2023, new orders were received from several US clients, which will lead to the manufacturing of advanced lasers and optical amplifiers f...

    2023-11-30
    Vedi traduzione
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    Vedi traduzione
  • The researchers used ultrafast lasers to create nanoscale photonic crystals

    The optical properties of photonic crystals are closely related to their lattice constants, which are usually required to be in the same order of magnitude as the operating wavelength. In a crystal material, the photonic crystal structure is formed by the periodic arrangement in space of units whose dielectric constant is different from that of the crystal itself, and whose lattice constant depend...

    2023-08-04
    Vedi traduzione