Italiano

IPG launches dual beam fiber laser for additive manufacturing applications

311
2024-11-25 12:00:10
Vedi traduzione

Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.
The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.


Based on its profound expertise in the field of high-power lasers, IPG has launched two new dual beam rack mounted lasers:
YLR-1000/3000-AMB series laser with 1kW core and 3kW ring combination;
YLR-2000/2000-AMB series laser with 2kW core and 2kW ring combination.
The all-new YLR-AMB series laser is specially designed for the additive manufacturing industry and has the following unique advantages:
Production efficiency leap: YLR-1000/3000-AMB laser has a construction rate of up to 324 cm ³/h and a density exceeding 99.9% in materials such as Ti-6Al-4V.


(Image source: IPG Photonics)

Multi functional processing capability: Combining single-mode and multi-mode outputs, the total power can reach 4 kilowatts, providing diverse processing options.
Heat distribution optimization: By independently adjusting the core and ring beams, more optimized heat distribution is achieved, promoting fast and high-quality construction.
Compact design: Adopting a slim 2U 19 inch (482.6mm) rack mounted design, it is not only easy to integrate, but also greatly saves space.
These innovative achievements have undergone rigorous testing by multiple top additive manufacturing OEM manufacturers, and preliminary results show excellent performance, significantly reduced costs, and greatly improved material utilization.


Trevor Ness, Senior Vice President of Global Sales and Business Development at IPG Photonics, emphasized that "YLR-AMB lasers have completely revolutionized the field of additive manufacturing. With high power, precise control, and application specific optimization, we help manufacturers reshape new standards for productivity and cost efficiency
The YLR-AMB series lasers perform well in high-performance applications such as aerospace components, medical equipment, and custom tools. Its key highlights include:
Material performance optimization: Specifically optimized for alloys such as Ti-6Al-4V (α - β titanium alloy) and CuCr1Zr (copper chromium zirconium).
Dynamic layer adjustment: Ensure the implementation of complex geometric shapes and perfect drape effects.


(Image source: IPG Photonics)

 


Source: Yangtze River Delta Laser Alliance

Raccomandazioni correlate
  • Dark Solitons Discovered in Ring Semiconductor Lasers

    Dark solitons - the extinction region in a bright background - spontaneously form in a ring semiconductor laser. Observations conducted by an international research group may lead to improvements in molecular spectroscopy and integrated optoelectronics.Frequency comb - a pulse laser that outputs light at equidistant frequencies - is one of the most important achievements in the history of laser ph...

    2024-02-01
    Vedi traduzione
  • More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

    μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.It is understood that ...

    2023-11-01
    Vedi traduzione
  • Generating dark and entangled states in optical cavities: unlocking new possibilities in quantum metrology

    Physicists have been working hard to improve the accuracy of atomic clocks, which are the most precise timing devices currently available. A promising way to achieve higher accuracy is to utilize spin squeezed states in clock atoms.Spin squeezed states are entangled quantum states in which particles work together to counteract their inherent quantum noise. These states provide incredible potential...

    2024-02-20
    Vedi traduzione
  • Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

    Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.Ultra fast laser proc...

    2024-08-06
    Vedi traduzione
  • Cobot Systems announces the establishment of a partnership between UR+and its laser welding collaborative robot system

    Cobot Systems announced that it has now become a UR+partner and showcased laser welding unit systems. This honor marks an important milestone in the company's journey of providing widely available automated labor solutions. This approval highlights Cobot Systems' commitment to providing innovative solutions compatible with UoRobot (UR) products, ensuring seamless collaboration with integrated lase...

    2024-05-16
    Vedi traduzione