Italiano

Using attosecond pulses to reveal new information about the photoelectric effect

356
2024-09-02 15:22:21
Vedi traduzione

Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between electrons more deeply, promoting the development of technologies such as semiconductors and solar cells. The relevant paper titled 'Attested delays in X-ray molecular ionization' was published in the latest issue of the journal Nature.

The photoelectric effect refers to the phenomenon in which photons interact with molecules or atoms on a metal surface when light is irradiated, causing the metal surface to release electrons. This effect laid the theoretical foundation for quantum mechanics, but the so-called photoelectric emission delay time has always been a fiercely debated topic. The latest progress in the field of attosecond science provides an important tool for further revealing the secret of this time delay.

Research schematic diagram
In the latest study, researchers used attosecond (10 billionth of a second) X-ray pulses emitted by SLAC's linear accelerator coherent light source to ionize core level electrons and "kick" them out of molecules. Then, they used separate laser pulses to "kick" the electrons in slightly different directions based on their emission time to measure the delay time of photoelectric emission.

Research shows that this delay time is as long as 700 attosecond, and the interaction between electrons plays an important role in this delay. Researchers point out that measuring and interpreting these time delays can help better analyze experimental results, especially in fields such as protein crystallography and medical imaging where the interaction between X-rays and matter is crucial. They plan to delve deeper into the electronic dynamics within different molecular systems, further revealing new information on electronic behavior and molecular structure.

Source: Science and Technology Daily, Author: Liu Xia

Raccomandazioni correlate
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    Vedi traduzione
  • Petrobras will use laser beams to measure wind speed and direction

    Petrobras announced last week that it plans to use laser beams to measure wind speed and direction. The idea is that these data will be used to improve the operation of the wind turbines maintained by this state-owned company in North Rio Grande do.The total investment of the 2.0 version of this device reaches R $11.3 million, known as the offshore wind assessment remote buoy.This technology can a...

    2023-10-24
    Vedi traduzione
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    Vedi traduzione
  • French research team successfully develops new orange laser

    A research team in France has reported a novel laser that emits light in the orange region of the spectrum, indicating its potential applications in flow cytometry and astronomical laser guidance.In the research results just published in Optics Express, the team (including researchers from the É cole Polytechnique in Caen, France and Oxxius, a laser manufacturer based in Lannion) claimed that the ...

    03-04
    Vedi traduzione
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    Vedi traduzione