Italiano

Goethe, University of Central Florida research team showcases light and thin achromatic diffractive liquid crystal optical systems

375
2023-09-26 14:19:26
Vedi traduzione

Headdisplay devices such as Apple Vision Pro, Meta Quest, and PICO are expected to completely change the way we perceive and interact with various digital information. By providing more direct interaction with digital information, MR has become one of the key driving forces for the metaverse, spatial computing, and digital twins, and has begun to be widely applied in fields such as intelligent tourism, intelligent healthcare, intelligent manufacturing, and intelligent buildings.

But in order to further enhance the ergonomics of MR, the industry must improve the overall user experience, especially long-term wear comfort. To achieve this goal, ultra compact and lightweight devices are key targets.

Recently, a team composed of Goethe Corporation and the University of Central Florida showcased an achromatic diffractive liquid crystal optical system with an ultra-thin and lightweight appearance.

The team pointed out that diffractive liquid crystal optical devices have the advantages of ultra-thin, lightweight, high diffraction efficiency (nearly 100%), easy manufacturing, polarization selectivity, and dynamic switching, making them highly promising optical components in the fields of virtual reality and hybrid reality.

Unlike refractive index optics that use optical path difference to generate phase maps, diffractive liquid crystal optical elements generate the required phase map by satisfying the half wave condition along the thickness direction. However, the diffraction angle of liquid crystal optical elements depends on the wavelength, which in turn leads to severe color difference and cannot be used for imaging purposes.

In order to overcome this long-standing color difference problem while maintaining an ultra-thin appearance, a team composed of Goethe Corporation and the University of Central Florida has proposed an achromatic liquid crystal optical system. The device consists of three stacked diffractive liquid crystal optical elements, which have specially designed spectral response and polarization selectivity.

In other words, in order to control the polarization state and correct color difference, the transmission spectrum and phase diagram of each optical element are carefully designed.

Among them, for the achromatic liquid crystal lens system that eliminates the focal shift between blue and red light, the first component is a broadband lens that displays high efficiency in the visible spectrum region; The second component is a half wave plate designed to switch the polarization state of blue light; The final component is an LC lens with a specially designed transmission spectrum, which is only effective for blue and red light.

The achromatic liquid crystal lens system can be achieved by simply stacking these three components together, and both achromatic grating and deflector systems can be constructed based on the same principle.

This concept has been validated through two different types of light engines: laser projectors and organic light-emitting diode display panels. The image of a single liquid crystal lens exhibits severe color difference, which is caused by the wavelength dependence of diffractive optical devices on optical power.

However, the achromatic lens system significantly improves color performance and greatly suppresses color difference. The experimental results indicate that two types of light engines, laser projectors and organic light-emitting diode display panels, have significantly improved imaging performance. In addition, simulation results show that compared to traditional broadband diffractive liquid crystal lenses, the lateral color shift is reduced by about 100 times.

Related Papers: Acoustic diffractive liquid crystal options for virtual reality displays
The team pointed out that by appropriately controlling the polarization state, this method can be extended to other types of diffractive optical devices, potentially achieving more compact optical components.

Source: Sohu

Raccomandazioni correlate
  • What are double- and triple-stack hybrid stepper motors

    Of the three primary stepper motor designs — permanent magnet, variable reluctance, and hybrid — hybrid stepper motors are arguably the most popular in industrial applications, combining the best performance characteristics of permanent magnet and variable reluctance types.Hybrid stepper motors are constructed with a rotor made of two sections, or cups, with a permanent magnet between ...

    2023-09-16
    Vedi traduzione
  • Mycronic receives first order after upgrading solid-state lasers

    Recently, Mycronic AB received its first order from SK Electronics in Japan to upgrade the installed display mask writer from a gas laser to a solid-state laser. The upgrade is scheduled to be delivered within the next two years.Image source: MycronicIt is reported that Mycronic's "Pattern Generators" department provides mask writers for display manufacturing and semiconductor production. So far, ...

    2023-10-16
    Vedi traduzione
  • Southern Stoneworks revolutionizes countertop installation in Orlando with innovative laser technology

    A good countertop can make a home better. In that spirit, Southern Stoneworks, Orlando's leading countertop manufacturer and installer, has set a new standard in the industry by incorporating advanced laser technology into its processes. Utilizing state-of-the-art laser-guided saws and tools, the company has significantly reduced the time required to measure, manufacture, and install kitchen count...

    2023-08-04
    Vedi traduzione
  • TroGroup announces acquisition of Luxinar Ltd.

    Recently, TroGroup, a family owned laser giant operating globally in Austria, announced a major strategic move - the successful acquisition of Luxinar Ltd., a leading laser source manufacturer based in Hull, UK. This move marks a new level of TroGroup's technological leadership in the field of laser sources.Through this acquisition, Luxinar, with its approximately 200 elite team and over 25 years ...

    2024-08-03
    Vedi traduzione
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    Vedi traduzione