Italiano

EO Technologies from South Korea enters the glass substrate processing market

1155
2024-06-18 15:44:27
Vedi traduzione

Recently, EO Technologies, a well-known semiconductor laser processing equipment manufacturer in South Korea, is emerging in the glass substrate processing market.

It is understood that EO Technologies is entering the glass substrate TGV market based on its UV laser drilling equipment originally used in PCB substrate technology. TGV technology is the core process for drilling holes inside glass substrates. EO Technologies has now started providing relevant laser process equipment to Samsung Electronics and Apple (based on end users).

Previously, EO Technologies focused on the laser drilling market based on its ability to produce DPSS ultraviolet laser sources, and supplied UV laser drilling equipment to PCB manufacturers such as Samsung Electric, whose end users are Samsung Electronics.

Since the end of last year, companies such as Samsung Electric have expressed their intention to enter the glass substrate business. It seems that the concept of glass substrates is gradually deeply integrated into the existing PCB market. However, currently, Samsung Electric's UV laser drilling equipment has relatively small sales in the PCB business field.

According to industry insiders, since the second half of last year, EO Technologies has been using TGV drilling equipment for glass substrate processing for multiple customers, including Samsung Electric, and is currently conducting yield testing.

Given that the market is still in its early stages, Samsung Electronics' packaging technology is expected to take at least 1 to 2 years to mature. However, once entering the mass production stage, this technology will form a synergistic effect with Samsung Electronics' memory department and its renowned laser marking supply line, jointly forming a promising sales growth point.

The core challenge of glass substrate TGV technology lies in successfully penetrating the drill bit through the core layer and the insulation layer of ABF. The industry has highly praised EO Technologies' UV laser drilling equipment, as it uses low pulse, high-energy laser technology to accurately drill holes with diameters as low as 10um or even smaller.

However, the key to this process lies in overcoming the problem of glass breakage to ensure high yield during mass production.
According to the latest news, EO Technologies' UV laser drilling technology on double-layer glass substrates is nearing commercialization, but overcoming material vulnerability is still considered a key prerequisite for technological breakthroughs. At present, the estimated production of this technology is still below 50%.

Since 2020, EO Technologies has been providing laser annealing equipment for Samsung Electronics' DRAM 1z (15nm level) mass production process, and has the same equipment on the HBM production line. Based on its long-term partnership with Samsung Electronics, EO Technologies has recently expanded its customer network to include TSMC and Apple.

It is worth mentioning that Apple is currently actively evaluating the application prospects of glass substrate technology in the next generation of mobile application processors (APs), and the possibility of cooperation with companies such as Samsung Electric is gradually increasing.

This may be an opportunity for EO Technologies, which has established a solid cooperation framework with Samsung and Apple. At present, Samsung Electric has successfully provided the relevant process products to Apple.

As of now, EO Technologies has not confirmed this incident. According to an insider, EO Technologies is currently testing laser drilling machines related to glass substrates, but due to strong NDA (confidentiality agreement) with customers, further progress is difficult to confirm.

Source: OFweek

Raccomandazioni correlate
  • Narrow band tunable terahertz lasers may change material research and technology

    A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.By tuning the light source to 10...

    2023-11-21
    Vedi traduzione
  • Jenoptik will invest millions of dollars to expand its optical manufacturing facilities

    A high-end manufacturing facility for semiconductor optics will be expanded at Jenoptik’s production campus in Jena, Germany. The photonics group will invest a sum in the low double-digit million euro range starting at the end of 2025.On the expanded production areas, Jenoptik will manufacture sophisticated, high-quality optical components that are mainly used in the semiconductor equipment indust...

    09-13
    Vedi traduzione
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    Vedi traduzione
  • Trumpf and SiMa. ai collaboration to develop AI laser

    Recently, Trumpf Group, a leading global provider of machine tools and laser technology solutions, announced that it has partnered with software company SiMa AI has signed a partnership agreement to develop lasers with artificial intelligence (AI).It is reported that SiMa. ai is a software centric embedded edge machine learning chip system company, and the goal of both parties is to equip Trumpf'...

    2024-07-19
    Vedi traduzione
  • Scientists demonstrate a new optical neural network training method that can crush electronic microprocessors

    The current deep neural network system (such as ChatGPT) can quickly improve energy efficiency by 100 times in training, and "future improvements will greatly increase by several orders of magnitude. Scientists from MIT and other institutions have demonstrated a new optical neural network training method that can crush state-of-the-art electronic microprocessors.Moreover, the computational density...

    2023-09-27
    Vedi traduzione