Italiano

Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

454
2024-05-23 14:12:18
Vedi traduzione

In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.

Scientists from the KTH Royal Institute of Technology in Stockholm have stated that combining quartz glass optical devices with optical fibers can achieve various innovations, including more sensitive remote sensors for the environment and healthcare. The printing technology they reported may also prove valuable in the production of drugs and chemicals.

This work was described in the ACS Nano journal.
Professor Kristin Gylfason from KTH stated that this method overcomes the long-term limitations of using quartz glass to construct fiber tips, which typically require high-temperature treatment, thereby damaging the integrity of temperature sensitive fiber coatings.

Compared to other methods, this process starts from a non carbon substrate. This means that there is no need for high temperatures to remove carbon, in order to make the glass structure transparent. Lead author Lee Lun Lai said that researchers have printed a quartz glass sensor, which has been proven to be more elastic than standard plastic sensors after multiple measurements.

New applications
Meanwhile, researchers from Aston University in Birmingham have received over £ 1 million ($1.27 million) in funding to develop very small optical devices that can also be installed on fiber surfaces. The potential applications are manufacturing, information technology, and agriculture.

The Engineering and Physical Science Research Council (EPSRC) in the UK has provided a grant of £ 1167290 for the PicoSNAP project. This award will be used to develop surface nanoscale axial photonics (SNAP) technology, which can manufacture micro photonic devices.

Traditionally, the accuracy of micro devices is limited by the size of atoms, and manufacturing techniques remain stable at a few nanometers. However, the PicoSNAP technology, pioneered by Professor Misha Sumetsky from the Aston Institute of Photonics Technology (AIPT), allows devices to be further scaled down so that measurements can be made in picometers.

Professor Sumetsky's goal is to develop a reliable manufacturing process to produce equipment that is both ultra precise and easy to replicate. If successful, the project will not only bring a new revolutionary technology, but also provide micro optical devices with previously unattainable performance and prepare for practical applications.

He said, "The lack of reliable and scalable picosecond precision manufacturing processes remains a major obstacle, and SNAP technology has the potential to meet this demand with its excellent accuracy and performance. The goal of this project is to develop the process, which requires a deep understanding of the relevant physical phenomena and the design and manufacture of new micro devices that are crucial for future communication, optical signal processing, microwave, and sensing technologies.".

Source: Laser Net

Raccomandazioni correlate
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    Vedi traduzione
  • Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

    It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was publi...

    2024-06-06
    Vedi traduzione
  • Upgrading 3000W fiber laser to high energy and miniaturization has become a new trend

    Recently, the discussion on "miniaturization" in the domestic laser industry has become increasingly heated. From various exhibition venues, miniaturization and lightweight have become important display directions for fiber laser manufacturers.High energy and miniaturization have become new trendsIn the past few years, high-power has undoubtedly been the main development direction in the field of ...

    2023-09-20
    Vedi traduzione
  • WEC acquires precision laser cutting giant Laser Profiles Ltd

    Recently, WEC Group, a leading engineering and manufacturing company in the UK, announced that it has completed the acquisition of Laser Profiles Ltd, a precision laser cutting leader in Bournemouth. For over 40 years, WEC Group has been providing manufacturing, laser cutting, precision machining, waterjet cutting, powder coating, and CCTV installation solutions.The company stated that the acqui...

    2024-08-19
    Vedi traduzione
  • Laser induced 2D material modification: from atomic scale to electronic scale

    Background IntroductionTwo dimensional materials have attracted widespread attention due to their atomic level thickness and unique properties, such as high binding energy, tunable bandgap, and new electronic degrees of freedom (valley electronics). They have many application prospects in fields such as microelectronics, nanophotonics, and nanoenergy. Various two-dimensional materials have their o...

    2024-02-23
    Vedi traduzione