Italiano

The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

1038
2023-09-04 17:32:54
Vedi traduzione

High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.

Especially fiber laser due to stable and reliable operation characteristics, compact structure, excellent beam quality, low cost and other advantages. It has received much attention from people and is also a popular laser product with an average output power of up to 100W. 

However, due to the harmful nonlinear effects in the fiber, the single pulse energy generated by a single fiber is difficult to break through the bottleneck of the millisjiao while ensuring the pulse quality and beam quality in the time domain, which limits many important applications that require laser intensity.

The coherent synthesis technique is a feasible method to obtain femtosecond pulses with high average power and millifocal order by combining the multi-channel amplified femtosecond pulses together. There are two kinds of coherent components: active coherent synthesis and passive coherent synthesis. 

The power and energy of active coherent synthesis can be increased with the increase of the number of synthesis paths, but complex and expensive electronic control locking system is needed. However, passive synthesis does not need an electronic phase stabilizer, and the device is relatively simple, but limited by the number of synthesis paths, the synthetic average power and single pulse energy are low.

In view of the above problems and difficulties, the L07 group of the Institute of Physics of the Chinese Academy of Sciences/Beijing National Research Center of Condensed Matter Physics, based on years of research on high-power ultrafast fiber lasers, proposed that Static Mode Degradation (SMD) in fibers is a key bottleneck to limit the average power of passive coherent synthesis schemes. 

Based on this, a bidirectional isolator that can effectively inhibit SMD has been invented. After achieving an average power of 100W in 2021 (Opt.Lett. 46, 3115 (2021)), recently based on a passive synthetic ytterbium-doped ultrafast fiber laser system, not only further obtained the results of a maximum average power of 200 W. At the repetition rate of 100 kHz, the single pulse energy reaches 1.07 mJ, and the synthesis efficiency of the system exceeds 85%. the results are published in the latest issue of the Journal of the Optical Society of America B. The first author of the paper is Shi Zhuo, a doctoral student supervised by Chang Guoqing Special Researcher.

Figure 1. Experimental device diagram

As shown in FIG. 1, the polarized laser pulse provided by the front end with an energy of 0.80μJ and an adjustable repetition frequency between 100kHz and 1MHz is widened, reflected by PBS1 and transmitted by PBS2. After the time splitting device consisting of PBS3 and PBS4 is divided into two small pulses with an interval of about 2ns, the beam splitting device is divided into two small pulses. Further amplification by PBS5 is divided into four pulses into the Sagnac loop. 

Two of the pulses are transmitted in a clockwise direction and the other two are transmitted in a counterclockwise direction and are circularly polarized using quarter wave plates (QWP1 and QWP2) before entering the bar fiber. A polarizing beam splitter PBS6 is inserted between the two gain fibers to polarize the pulses, and the light in both directions is transferred for a circle at PBS5, and the pair-wise synthesis is performed. Some of the depolarized light leaks out from the synthesis, forming a depolarization port.

 Most of the light is returned from the original path, and becomes a pulse through the time domain coincidence at the time division pulse device. Some of the unsynthesized light is not output at the synthesized port, and the synthesized light is output from the synthesized port. The experimental results show that the average power of the synthesized port reaches 160W at a repetition frequency of 150kHz. 

When the repetition rate is reduced to 100kHz, the single pulse energy after pulse compression is 1.07mJ, and no obvious SMD phenomenon is observed during the amplification process. Figure 2 shows the main measurement results at this energy. The display pulse width is 240fs, spectral width is 8.7nm, the corresponding RMS within 3 hours is less than 0.5%, the beam quality M2 factor is 1.11×1.27, and the longitudinal beam distortion is mainly from the grating pair.

Figure 2. Results of (a) autocorrelation curve, (b) spectral distribution, (c) power stability and (d) beam quality at 1.07 mJ

Compared with previous high-power ytterbium-doped fiber femtosecond laser sources based on single amplification or active synthesis, this study uses a passive synthesis method with simple structure, and obtains results greater than 1mJ, breaking through the bottleneck of conventional femtosecond fiber laser monopulse energy, and has an average power output capacity of up to 200W, excellent beam quality and stability. 

It is expected to play an important role in the generation of high repetition frequency attosecond high harmonics, precision machining and cutting of special materials, semiconductor chip defect detection and biomedical imaging. The devices and core devices related to this progress have applied for national invention patents.

Source: Sohu

Raccomandazioni correlate
  • Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Techn...

    2024-06-12
    Vedi traduzione
  • South Korean DE&T will open new subsidiaries in the United States and Canada

    Recently, DE&T, a South Korean manufacturer of secondary batteries and display laser equipment, announced that the company will further expand its overseas business by opening new subsidiaries in the United States and Canada. According to its claim, this move is to carry out maintenance services for laser equipment locally. As of now, DE&T's overseas subsidiaries have increased from two to...

    04-08
    Vedi traduzione
  • Researchers use lasers to measure and manipulate magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-03-05
    Vedi traduzione
  • NASA will demonstrate laser communications from the space station

    NASA's ILLUMA-T payload communicates with the LCRD via laser signals.NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to...

    2023-09-02
    Vedi traduzione
  • Femtosecond laser-induced plasticity of copper oxide nanowires

    It is reported that researchers from the University of Waterloo in Canada have reported a study on the plasticity of copper oxide nanowires induced by femtosecond laser. The related research was published in Applied Surface Science under the title "Femtosecond laser induced plasticity in CuO nanowires".Metal oxide nanowires are ideal materials for manufacturing nanodevices, especially strain senso...

    2024-07-15
    Vedi traduzione