Italiano

NASA will demonstrate laser communications from the space station

200
2023-09-02 14:36:58
Vedi traduzione

NASA's ILLUMA-T payload communicates with the LCRD via laser signals.

NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to astronauts conducting experiments, including improving NASA's space communications capabilities.

In 2023, NASA will send a technology demonstration called the Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T) to the space station. ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together complete NASA's first two-way end-to-end laser relay system.

With ILLUMA-T, NASA's Space Communications and Navigation (SCaN) Program Office will demonstrate the power of laser communications on the space station. Laser communication systems use invisible infrared light to send and receive information at higher data rates. With higher data rates, missions can send more images and videos back to Earth in a single transmission. Once installed on the space station, ILLUMA-T will demonstrate the benefits of higher data rates for low-Earth orbit missions.

"Laser communications provide missions with greater flexibility and a fast way to get data from space," said Badri Younes, former deputy deputy administrator for the NASASCaN program. "We are integrating this technology into demonstrations near the Earth, on the moon and in deep space."

In addition to higher data rates, laser systems are lighter and consume less power, a key advantage when designing spacecraft. ILLUMA-T, which is about the size of a standard refrigerator, will be attached to the station's external module for demonstration with the LCRD.

Currently, LCRD is demonstrating the benefits of laser relay in geosynchronous orbit, 22,000 miles above Earth, by transmitting data between two ground stations and conducting experiments to further refine NASA's laser capabilities.

"Once ILLUMA-T is aboard the space station, the terminal will send high-resolution data, including pictures and video, to the LCRD at a rate of 1.2 gigabits per second," said Matt Magsamen, ILLUMA-T deputy program manager. "The data will then be sent from LCRD to ground stations in Hawaii and California. The demonstration will show how laser communications can benefit low-Earth orbit missions.

NASA's Laser Communication Roadmap: Demonstrating laser communication capabilities across multiple missions in a variety of space conditions. Source: NASA/Dave Ryan

ILLUMA-T was launched as a payload on SpaceX's 29th commercial resupply services mission for NASA. For the first two weeks after launch, ILLUMA-T will be removed from the trunk of the Dragon spacecraft and installed on the station's Japan Experimental Module Exposure Facility (JEM-EF), also known as "Kibo" - which means "hope" in Japanese.

After the payload is installed, the ILLUMA-T team will conduct initial testing and on-orbit inspections. Once completed, the team will pass the payload's first light - a key milestone as the mission transmits its first laser beam to LCRD through its optical telescope.

Once the first light is reached, data transmission and laser communication experiments will begin and continue throughout the planned mission period.

Test lasers in different scenarios

In the future, operational laser communications will complement radio frequency systems, which are used by most space-based missions today to send data home. ILLUMA-T is not the first mission to test laser communications in space, but brings NASA closer to an operational injection of the technology.

In addition to LCRD, ILLUMA-T's predecessors include the 2022 TeraByte Infrared Transmission system, which is currently testing laser communications on small Cubesats in low Earth orbit; Lunar laser communication demonstration to send data to and from lunar orbit and Earth during the Lunar Atmosphere and Dust Environment Explorer mission in 2014; As well as the 2017 Optical payload for Laser Communication Science, the model demonstrates how laser communication speeds up the flow of information between Earth and space compared to radio signals.

Testing the ability of laser communications to generate higher data rates in a variety of scenarios will help the aerospace community further refine the capabilities of future missions to the moon, Mars and deep space.

Source: Thepaper.cn

Raccomandazioni correlate
  • GF Machining Solutions will showcase the latest members of its laser tradition on EPHJ

    At the EPHJ exhibition, GF Machining Solutions will showcase its latest laser solutions for microfabrication and 3D surface texture processing. Inspired by 70 years of innovation in the machine tool industry and 15 years of mastery of laser technology, GF Machining Solutions' latest innovations enable manufacturers to take speed and accuracy to new levels - they can experience it firsthand at EP...

    2024-06-06
    Vedi traduzione
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Vedi traduzione
  • Researchers have made breakthrough discoveries in the field of nanophotonics

    Researchers have made breakthrough discoveries in the field of nanophotonics. They have successfully developed a locked mode ultrafast laser using lithium niobium, a material known for its excellent optical properties. This breakthrough opens up new possibilities for revolutionary applications, including telecommunications, data storage, and ultra fast imaging.A mode-locked laser is a type of lase...

    2023-11-20
    Vedi traduzione
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Vedi traduzione
  • BYD and Huagong Technology deepen strategic cooperation and exchange

    Recently, BYD Semiconductor Division held discussions and exchanges with Huagong Technology High Tech Company and Laser Company, opening a new chapter of strategic cooperation.Chen Gang, General Manager of BYD Semiconductor Division, Nie Bo, Party Committee Member and General Manager of Huagong High Tech, Wang Jiangang, Party Committee Member, Deputy General Manager of Huagong Laser, and General M...

    2024-12-11
    Vedi traduzione