Italiano

Lumiotive and Hokuyo announce the launch of the world's first 3D LiDAR sensor with true solid-state beam steering

449
2024-05-25 15:29:59
Vedi traduzione

Lumotive, a pioneer in optical semiconductor technology, and Hokuyo Automatic Co., a global leader in sensors and automation, Ltd. announced today the commercial version of the YLM-10LX 3D LiDAR sensor. This breakthrough product features Lumiotive's light controlled metasurface (LCM) ™) Optical beamforming technology represents a significant leap in the application of solid-state programmable optical devices to change 3D sensing in industrial automation and service robot applications.

Lumiotive's LCM technology utilizes the power of dynamic metasurfaces to manipulate and guide light in ways that were previously impossible, eliminating the need for bulky, expensive, and fragile mechanical moving components in traditional LiDAR systems. The LCM chip is the true solid-state beam control component of LiDAR, which can achieve unparalleled stability and accuracy in 3D object recognition and distance measurement, and effectively handle multipath interference, which is crucial for performance and safety in industrial environments.

Hokuyo's new sensor is the first of its kind in the LiDAR industry, integrating beam control with Lumiotive's LM10 chip to achieve excellent range and field of view (FOV) compared to any other solid-state solution on the market. In addition, The digital and software defined scanning function of LCM beam control allows users to easily adjust performance parameters such as sensor resolution, detection range, and frame rate, and can program and use multiple FOVs simultaneously, seamlessly adapting to application requirements and constantly changing indoor and outdoor conditions.

"The YLM-10LX sensor marks a breakthrough in 3D LiDAR technology, opening up new possibilities for automation and robotics," said Chiai Tabata, Head of Product and Marketing at Hokuyo. With the increasing demand for high-performance and reliable LiDAR systems in the industrial sector, these systems also have flexibility to meet various application needs. Our continuous cooperation with Lumiotive enables us to leverage the enormous potential of LCM beam control and provide innovative solutions to meet the ever-changing needs of customers.

Dr. Axel Fuchs, Vice President of Business Development at Lumiotive, said, "We are pleased to see our LM10 chip become the core of Hokuyo's new YLM-10LX sensor. This is our client's first product, and we are beginning to deploy our revolutionary beam control technology to the market." This product release highlights the enormous potential of our programmable optical devices in industrial robotics and other fields. We look forward to working with Hokuyo to continue redefining the possibilities of 3D sensing.

Lumiotive's LM10 LCM is a chip level solid-state beam control solution for LiDAR, enabling sensor manufacturers like Hokuyo to quickly integrate compact adaptive programmable optical devices into their products. Like all LCMs, LM10 is manufactured using mature and scalable silicon manufacturing technology, which reduces costs through economies of scale and makes solid-state LiDAR easy to use and economically feasible, making it widely adopted in a wide range of industries.

The commercial release of the YLM-1 0LX sensor is another important milestone for Hokuyo and Lumiotive's long-term strategic partnership and ongoing investment. The two companies will continue to combine Hokuyo's industry-leading expertise with Lumiotive's game changing optical semiconductors to break through the boundaries of 3D LiDAR technology and drive innovation in a wide range of applications.

Source: Laser Net

Raccomandazioni correlate
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    Vedi traduzione
  • New Method - Observing how materials emit polarized light

    Many materials emit light in ways that encode information in its polarization. According to researchers at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, polarization is key for future technologies, from quantum computers to secure communication and holographic displays.Among such phenomena is a form known as circularly polarized luminescence (CPL), a special type of light emission ...

    07-04
    Vedi traduzione
  • The construction of China's first attosecond laser device in Dongguan provides strong impetus for breakthroughs in multiple major fundamental scientific issues such as quantum computing

    On October 3rd, the 2023 Nobel Prize in Physics was announced, recognizing scientists who have studied attosecond physics, marking the beginning of the attosecond era for humanity.At present, China's first attosecond laser device, the "Advanced attosecond Laser Facility", is being prepared and built in Dongguan, Guangdong, providing strong impetus for breakthroughs in multiple major basic scientif...

    2023-10-07
    Vedi traduzione
  • The semiconductor laser market is expected to reach $5.3 billion by 2029

    Nowadays, laser technology is widely used in various traditional and emerging fields, including optical communication, material processing, consumer equipment, automotive sensing and lighting, display technology, medical applications for treatment and diagnosis, as well as aerospace and defense.Especially in the semiconductor laser market, it is expected to grow from $3.1 billion in 2023 to $5.2 b...

    2024-12-03
    Vedi traduzione
  • Tianjin University's Photoacoustic Remote Sensing Microscopy Technology Breakthrough New Heights

    Recently, Professor Tian Zhen's team from Tianjin University has made a breakthrough in the field of photoacoustic remote sensing microscopy technology and successfully developed a new type of non-destructive testing method. This technology uses Kaplin high-power femtosecond laser as the key light source, further optimizing the solution to the internal flaw detection limitations of inverted chips,...

    2024-04-16
    Vedi traduzione