Italiano

Researchers use desktop laser systems to generate ultrafast electrons

808
2024-03-14 14:50:56
Vedi traduzione

In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.

Traditionally, laser based particle accelerators require expensive lasers and are included in large national facilities. Such a complex setup can accelerate electrons to megaelectron volts of energy. However, can a simpler laser, which costs only a small part of the current lasers, be used to design similar particle acceleration schemes?

In an exciting leap, scientists from the Batata Institute in Hyderabad have designed an elegant solution to successfully generate MeV at a temperature that is only a small fraction of what was previously considered necessary laser intensity.
The research results are published in the journal Communication Physics.

This technology achieves two laser pulses; Firstly, a small controlled explosion is generated in the droplet, followed by a second pulse that accelerates the electrons to megaelectron volt energy. What's even more exciting is that they achieved this with 100 times less laser than what was previously considered necessary, making it easier to obtain and more versatile in future research. The impact of this discovery may be enormous, as it can generate high-energy electron beams for applications such as non-destructive testing, imaging, tomography, and microscopy, and may have an impact on materials science and bioscience.

The device developed by TIFRH researchers uses a millijoule level laser, emitting at a rate of 1000 pulses per second, with an ultra short pulse of 25 fs, for dynamically chiseling out a diameter of 15 μ Microdroplets of m. This dynamic target shaping involves the collaborative work of two laser pulses. The first pulse forms a concave surface in the droplet, while the second pulse drives an electrostatic plasma wave, pushing electrons towards MeV energy.

Electrostatic waves are oscillations in plasma, much like mechanical disturbances generated in a pool when passing through a stone. Here, the laser generates disturbances in the electronic ocean and generates an "electronic tsunami". The tsunami ruptures and produces high-energy electrons, just like the splashing of waves on the coast. This process produces not one, but two electron beams, each with different temperature components: 200 keV and 1 MeV.

This innovation generates a directed electron beam of over 4 MeV through a desktop suitable laser, making it a game changer for time-resolved and microscopic research across different scientific fields.

Source: Laser Net

Raccomandazioni correlate
  • The scientific research team of Beijing University of Technology opens up a new field of on-chip optics research

    Zhang Jun, an academician team of Beijing University of Technology, pioneered the on chip spectral multiplexing perception architecture, and independently developed the first 100 channel megapixel hyperspectral real-time imaging device in the world, creating the world's highest light energy utilization rate. On November 7, the team's relevant achievements were published in the journal Nature, and ...

    2024-11-08
    Vedi traduzione
  • Sales and order volume of Deutsche Bahn Group have decreased

    Recently, TRUMPF, a leading global provider of machine tools and laser technology solutions, released preliminary data for the 2023/24 fiscal year: compared to the previous fiscal year, sales decreased by about 4% year-on-year to 5.2 billion euros; The order amount decreased by 10% to 4.6 billion euros. The Tongkuai Group ended its 2023/24 fiscal year on June 30, 2024, with a decrease in both s...

    2024-07-22
    Vedi traduzione
  • Blue laser enterprise NUBURU obtains $5.5 million bridge financing

    Recently, NUBURU, a supplier of high-power and high brightness industrial blue laser technology in the United States, announced that it has reached bridge loan agreements ("bridge loans" or "bridge financing") with existing and new institutional investors.The principal of this bridge financing is $5.5 million, aimed at providing funding for the company until it obtains long-term credit financing,...

    2023-11-23
    Vedi traduzione
  • The United States promotes the development of next-generation EUV lithography technology

    LLNL has long been a pioneer in the development of EUV lithography technology.A laboratory located in California will lay the foundation for the next development of extreme ultraviolet (EUV) lithography technology. The project is led by Lawrence Livermore National Laboratory (LLNL) and aims to promote the next development of EUV lithography technology, centered around the laboratory's developed dr...

    01-06
    Vedi traduzione
  • Diffractive optical elements: the behind the scenes hero of structured light laser technology

    In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Ho...

    2024-04-10
    Vedi traduzione