Italiano

Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

478
2023-12-27 13:50:03
Vedi traduzione

Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.
Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.

Innovation in mode-locked laser technology
To improve the technology that typically requires bulky desktop devices, Quishi Guo and his colleagues reduced the size of mode-locked lasers to optical chips with integrated nanophoton platforms. The research results show that it provides prospects for the development of ultrafast nanophotonic systems for widespread applications.

The potential of miniaturizing MLL
A mode-locked laser can generate coherent ultra short optical pulses at an extremely fast speed - approximately picoseconds and femtoseconds. These devices have achieved many technologies in the field of photonics, including extreme nonlinear optics, two-photon microscopy, and optical computing.

However, most MLLs are expensive, require high power consumption, and require bulky discrete optical components and equipment. Therefore, the use of ultrafast photon systems is usually limited to desktop laboratory experiments. More importantly, the so-called "integrated" MLL used to drive nanophotonic platforms has key limitations, such as low peak power and lack of controllability.

Breakthrough in Nanophoton MLL Integration
Guo et al. created an optical chip sized integrated MLL by mixing semiconductor optical amplifier chips with a novel thin film lithium niobate nanophotonic circuit.

According to the author, MLL generates ultra short to 4.8 picosecond light pulses at approximately 1065 nanometers, with a peak power of~0.5 watts - the highest output pulse energy and peak power of any integrated MLL in the nanophotonic platform.

In addition, researchers have shown that the repetition rate of integrated MLL can be tuned in the range of~200 MHz and the coherent characteristics of the laser can be precisely controlled, providing a pathway for a completely stable on-chip nanophoton frequency comb source.

Source: Laser Net



Raccomandazioni correlate
  • The researchers used ultrafast lasers to create nanoscale photonic crystals

    The optical properties of photonic crystals are closely related to their lattice constants, which are usually required to be in the same order of magnitude as the operating wavelength. In a crystal material, the photonic crystal structure is formed by the periodic arrangement in space of units whose dielectric constant is different from that of the crystal itself, and whose lattice constant depend...

    2023-08-04
    Vedi traduzione
  • The new Casiris H6 4K UST tricolor laser projector is about to be launched through Indiegogo

    Casir is about to launch the H6 4K UST tricolor laser projector through Indiegogo. The new laser projector has a brightness of up to 3000 ANSI lumens and a BT.2020 color gamut coverage of 110%. It is an ultra short focus projector that runs on Android TV.The Casiris H6 4K UST tricolor laser projector is a brighter and more accurate version of the Casiris A6. It also has greater image projection ca...

    2023-09-18
    Vedi traduzione
  • German laser company Marvel Fusion recently raised 62.8 million euros in funding

    Recently, Marvel Fusion, a private German company dedicated to commercializing fusion energy through its own laser technology, announced that it has recently raised 62.8 million euros in Series B funding. This round of investors includes HV Capital, b2venture, Earlybird Venture Capital, Athos Venture, Primepulse, Plural Platform, and Deutsche Telekom. Meanwhile, Marvel Fusion has also received add...

    2024-10-12
    Vedi traduzione
  • Oxford University Tokamak Energy Company develops laser technology for fusion power plants

    Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.Clean, safe, and renewable nuclear fusion power generation occurs inside...

    2024-03-14
    Vedi traduzione
  • The scientific research team of Shenzhen University of Technology has discovered a new mechanism of attosecond pulse coherent radiation

    Recently, a team of Professor Ruan Shuangchen and Professor Zhou Cangtao from Shenzhen University of Technology proposed for the first time internationally a physical solution based on the generation of attosecond pulses and subperiodic coherent light shock radiation from a superluminal plasma wake field, and explained a new coherent radiation generation mechanism dominated by collective electron ...

    2023-10-14
    Vedi traduzione