Italiano

Filatek: Leading the Development of Laser, Shining "Additive Prince"

226
2024-04-12 16:20:24
Vedi traduzione

In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared at this exhibition. OFweek has the honor of inviting Yang Haiqing, the General Manager of Feilaitek, to conduct an interview with us, allowing him to reveal the latest achievements and future vision of Feilaitek.

Diversified exhibits showcase strength
As a leader in industrial laser dynamic focusing systems, Philatek has carefully presented a series of high-quality products at this exhibition, focusing on shaping its benchmark image in the laser field. Most of the exhibits of Feilaitek this time are standardized products, covering various light source adaptation solutions and segmented market applications. For the blue ocean markets of semiconductors and 3D printing, Feilaitek has launched a series of specialized products, showcasing Feilaitek's strategic vision in the field of laser processing technology.

The focus of this exhibition is undoubtedly the star product of Feilaitek - "Additive Prince", which is a multi laser dynamic focusing 3D printing galvanometer unit. This product is an innovative achievement of Feilaitek in response to the key research and development plan of the Ministry of Science and Technology during the 14th Five Year Plan period. Feilaitek has accurately identified the key bottlenecks faced by the processing of large format and large volume products in the additive manufacturing industry, and successfully developed the "Additive Prince", thereby driving the innovation and progress of related industries.

The Additive Prince can combine two beams of the same or different wavelength bands, achieving application scenarios with different process requirements. Its modular design supports full coverage arrays, with a minimum processing area of 300X300mm. At the same time, by incorporating forward-looking technologies such as redundant design and dynamic data allocation, "Additive Prince" greatly reduces the risk of printing interruption caused by single point failures, improves the production efficiency and yield rate of 3D printers, and has gained widespread industry recognition and praise.

Adhere to market orientation and actively face the future
The strong technical strength of Feilaitek, especially its advantages in dynamic focusing optical design and software development, makes it unique in the laser market. Feilaitaike always adheres to a market-oriented approach and firmly believes that technological innovation should be based on solving problems and meeting market demands. The high precision dynamic focusing system, modular integration capability, and software platform supported dynamic data scheduling mechanism constitute its core technological advantages, endowing the product with a solid foundation to meet the complex needs of various industries.

Looking ahead to the future, Feilaitaike is full of confidence in the trend of intelligence and automation in the laser welding market. It plans to launch a second-generation adaptive laser processing workstation that integrates control algorithms, big data models, and artificial intelligence technology to achieve independent optimization of process parameters in complex environments and promote the intelligent upgrading of dynamic focusing systems.

In addition, the company's product line will further expand to fields such as automotive manufacturing, additive manufacturing, semiconductor processing, and photovoltaic manufacturing. Through a deep understanding of industry characteristics, modular design will be used to achieve product standardization and rapid deployment. At the same time, process parameters will be flexibly adjusted to accurately match the specific needs of each industry, effectively driving industrial upgrading.

Taking the automotive industry as an example, currently, Feilaitaike's products have been widely used in the automotive manufacturing industry. The hollow and transparent effect of interior and exterior decorations is a popular trend in automotive manufacturing, and the implementation of this design must rely on the power of lasers. By utilizing the laser and 3D dynamic focusing system technology of Feilaitek, it is possible to achieve one-time laser translucent carving of complex surfaces during the processing, reduce production processes, customize carving content, and other functions, thereby helping the automotive manufacturing industry to quickly upgrade.

As an industry solution provider, Feilaitek always puts application implementation first, deeply understands and accurately responds to the real needs of the industry, defines and innovates products based on industry attributes, rather than just pursuing standardization or one-sided technological leadership. In the view of Philatek, laser technology, as a "universal processing tool", is not an independent field. Only when laser technology is closely integrated with the needs of various industries can its inherent value be fully unleashed, thereby driving innovation and progress in related industries.

Source: OFweek

Raccomandazioni correlate
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Vedi traduzione
  • Allocate 10 billion US dollars! New York State to Build NA Extreme UV Lithography Center

    On December 11th local time, New York State announced a partnership with companies such as IBM, Micron, Applied Materials, and Tokyo Electronics to jointly invest $10 billion to expand the Albany NanoTech Complex in New York State, ultimately transforming it into a high numerical aperture extreme ultraviolet (NA EUV) lithography center to support the development of the world's most complex and pow...

    2023-12-15
    Vedi traduzione
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    Vedi traduzione
  • Vector Photonics accelerates the commercialization of PCSEL laser technology

    Recently, Vector Photonics, a well-known surface coupled laser technology supplier in the UK, announced that the company has received £ 3 million in financing (including £ 1.667 million in equity investment and £ 1.27 million in additional research funding, equivalent to approximately RMB 27.63 million) to help commercialize its surface coupled laser technology.(Image source: Vector Photonics)Vect...

    2024-07-04
    Vedi traduzione
  • Shanghai Institute of Optics and Mechanics has made progress in studying the structure and properties of aluminum phosphate glass

    Recently, Hu Lili, a research team of the High Power Laser Unit Technology Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics, used a method combining experiment, molecular dynamics simulation and quantitative structure property relationship analysis (QSPR) to study aluminum phosphate glass, and the related research results were published in the Journal o...

    2023-09-15
    Vedi traduzione