Italiano

Samsung Heavy Industries Developing a Laser High Speed Welding Robot for Liquefied Natural Gas Ships

264
2023-09-22 15:04:02
Vedi traduzione

South Korea's Samsung Heavy Industry announced on Thursday that it has developed the first laser high-speed welding robot in the maritime field, aimed at significantly improving the construction efficiency of liquefied natural gas (LNG) transport ships.

This new technology is specifically designed for rapid welding of thin film panels used in cargo compartments of liquefied natural gas transport ships. These films are made of thin layers of stainless steel and come into direct contact with ultra-low temperature liquid natural gas.

Compared to the traditional plasma arc welding (PAW) method, which takes about 5 minutes to weld a 2-meter-long membrane plate, the new robot can complete the task in just 1 minute.

The laser high-speed welding robot is developed by Samsung Production Technology Research Center and uses a swinging method to rotate the laser beam at precise intervals and speeds.

This technology also has defocusing function for adjusting the focus and laser displacement sensor for automatically positioning the bending welding position.

The integration of this advanced welding technology is expected to significantly improve the productivity of shipbuilding companies in the construction of liquefied natural gas transport ships.

The company plans to conduct application testing with the French engineering company GTT's liquefied natural gas cargo hold (MK-III) and begin full-scale production using this technology after obtaining final customer approval later this year.

Cui Douzhen, the head of Samsung Heavy Industry Production Technology Research Center, said: "Laser high-speed welding robots will become the core technology to maintain overwhelming competitiveness in the key process of liquefied natural gas transport ship cargo hold construction." "We plan to expand its application to the cargo hold of ultra-low temperature liquid hydrogen transport ships in the future.

Source: Laser Network

Raccomandazioni correlate
  • Application of Airborne Lidar Calibration Board in Various Fields

    With the rapid development of technology, airborne LiDAR technology has become one of the key technologies in modern surveying, remote sensing, navigation and other fields. As an important component of this technology, the airborne LiDAR calibration board plays a crucial role in ensuring the accuracy and stability of the radar system. This article will explore the application and importance of air...

    2024-04-08
    Vedi traduzione
  • The creator of a computer that uses lasers to perform complex tasks at the speed of light has announced a breakthrough in high-performance computing

    LightSolver's new LPU100 system is powered by 100 lasers and can solve the most challenging problems through up to 120100 combinations.This computer was created by Dr. Ruti Ben Shlomi, CEO of LightSolver and Dr. Chen Tradonsky, CTO, a physicist at the Rehowatt Weizmann Institute for Science.It is not suitable for household use because its high computing power exceeds individual needs, but it is su...

    2024-03-21
    Vedi traduzione
  • Intel installs the first EUV manufacturing tool that can emit lasers hotter than the sun

    Chip giant Intel announced that it has completed the assembly work of the world's first commercial high numerical aperture (NA) extreme ultraviolet lithography (EUV) scanner. This device greatly improves the resolution and feature scaling of next-generation chips by changing the optical design used to project printed images onto silicon wafers.This lithography equipment weighing 150 tons has been ...

    2024-04-22
    Vedi traduzione
  • Researchers have developed a quantum cascade laser in Italy

    The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, ...

    2023-08-04
    Vedi traduzione
  • Accurate measurement of neptunium ionization potential using new laser technology

    Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy te...

    2024-05-11
    Vedi traduzione