Italiano

Quantum computing company secures $500 million in funding

494
2025-09-30 11:26:29
Vedi traduzione

Quantum Computing Inc. (QCI), a startup based in the United States, recently opened a foundry for integrating photonics with thin-film lithium niobate (TFLN). The company announced that it has raised $500 million in total proceeds through a new private equity offering.

It means that the Nasdaq-listed New Jersey startup, whose foundry is located within Arizona State University’s Research Park in Tempe, has now attracted $900 million support over the past year.

The firm said that the additional cash would be used to help accelerate commercialization efforts, strategic acquisitions, expand sales and engineering personnel, working capital, and general corporate purposes.

"This successful $500 million offering, backed by strong support from both new and existing top-tier institutional investors, was priced at a significant premium compared to our four recent offerings," pointed out QCI’s CEO, Yuping Huang.

 



TFLN entanglement


“This additional funding further strengthens our balance sheet and positions us to advance our multi-year growth strategy of accelerating commercialization, pursuing strategic acquisitions, expanding our sales and engineering teams, and enhancing our manufacturing capabilities.”

QCI did not specify who its latest backers are, other than to say that the offering was led by “several large existing shareholders alongside an initial investment from a pre-eminent global alternative asset manager”.

Its filings with the US Securities and Exchange Commission (SEC) indicate an unusual history, with the company previously known as “Ticketcart” and “Innovative Beverage Group Holdings” before it became QCI, listed on the Nasdaq, and merged with a company called “QPhoton”.

TFLN photonics foundries
While the funding effort means that QCI can now boast a balance sheet featuring $850 million in cash holdings, the firm’s most recent financial results indicate that it remains at a very early stage of business development.

For the quarter ending June 30, QCI posted a pre-tax loss of $36.5 million on negligible sales revenues, although that figure was heavily impacted by a $28 million write-down in the value of a “derivative liability”.

At the operating level, the company posted a loss of $10.2 million, bringing its operating loss for the first six months of 2025 to $18.5 million - up from $11.6 million for the equivalent period last year.

Towards the end of June QCI reported that it had shipped its first commercial product, an entangled photon source to support research in quantum networking and secure communications that was destined for a South Korean research institute. It is also working with research groups at the Delft University of Technology and NASA, and has secured a TFLN chip order from the National Institute of Standards and Technology (NIST).

Earlier in the year the company appeared at the SPIE Photonics West technology exhibition, promoting its TFLN foundry service for photonic integrated circuits (PIC), with the operation subsequently awarded ISO certification.

Other proponents of TFLN photonics, which has emerged as a potential competitor to silicon photonics and indium phosphide material platforms in certain PIC applications for AI data centers, include the startups Lightium and HyperLight, as well as the CSEM spin-out CCRAFT.

They all point to the promise of up to eight times faster speed and a ten-fold reduction in energy consumption as the key advantages offered by the novel thin-film material, which is already a very well understood and widely deployed material in its bulk optical format.

Source: optics.org

Raccomandazioni correlate
  • LPKF 2024 H1 revenue up 15% year-on-year

    Recently, LPKF Laser, a leading supplier of innovative laser solutions in Germany, released its performance report for the first half of the 2024 fiscal year as of June 30, demonstrating the company's steady performance and forward-looking layout in a complex market environment. According to the financial report, LPKF Laser&Electronics SE achieved significant growth in comprehensive revenue ...

    2024-07-31
    Vedi traduzione
  • TRUMPF high-power laser dynamic beam shaping technology creates opportunities for the electric vehicle industry

    It is reported that researchers from TRUMPF in Germany reported research on using dynamic beam shaping of high-power lasers to improve the productivity of hairpin stators, creating opportunities for the electric vehicle industry. Relevant research was published in "PhotonicsViews" under the title "Unlocking opportunities for the EV industry with beam shaping of high-power lasers".The electric vehi...

    2024-07-01
    Vedi traduzione
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    Vedi traduzione
  • Nanjing University of Science and Technology has made new progress in the field of programmable lensless holographic cameras

    Recently, Professor Chen Qian and Professor Zuo Chao's research group from the School of Electronic Engineering and Optoelectronic Technology at Nanjing University of Science and Technology proposed a minimalist optical imaging method based on programmable masks - programmable Fresnel zone aperture lensless imaging technology. The related achievement, titled "Lensless Imaging with a Programmable F...

    04-14
    Vedi traduzione
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-04-17
    Vedi traduzione