Italiano

What are double- and triple-stack hybrid stepper motors

532
2023-09-16 13:55:30
Vedi traduzione

Of the three primary stepper motor designs — permanent magnet, variable reluctance, and hybrid — hybrid stepper motors are arguably the most popular in industrial applications, combining the best performance characteristics of permanent magnet and variable reluctance types.

Hybrid stepper motors are constructed with a rotor made of two sections, or cups, with a permanent magnet between them. This causes the cups to be magnetized axially — with one cup polarized north and the other cup polarized south. The surfaces of the rotor cups have precisely-ground teeth (typically 50 or 100 teeth per cup), and the cups are aligned with an offset of  ½ tooth pitch between the two sets of teeth.

In a hybrid stepper motor, the stator poles are also toothed, and when pulses are delivered to the stator by the stepper drive, these poles are magnetized, causing the rotor to turn so that the teeth of the rotor and stator align (N-S or S-N).

This hybrid design — with teeth on both the rotor and stator — allows the motor to optimize magnetic flux, and therefore, produce higher torque than permanent magnet or variable reluctance designs. Hybrid stepper motors can also achieve step angles as small as 0.72 degrees in full-step mode and operate at higher speeds than other designs.

Although proprietary designs and production methods allow manufacturers to optimize the torque output (as well as step accuracy and speed characteristics) of their hybrid stepper motors, torque production is still closely tied to the frame size of the motor.

Stepper motors generally adhere to the NEMA ICS 16-2001 standard for frame sizes, which specifies mounting dimensions such as flange size and bolt circle diameter. However, one dimension not covered by the NEMA standard is motor length. And this flexibility in motor length for a given frame size provides manufacturers with another option for increasing the torque production of a particular NEMA size stepper motor — by creating motors with longer stack lengths. For example, double- and triple-stack stepper motors are now common offerings from several manufacturers.

Double- and triple-stack hybrid stepper motors simply have multiple rotors and stators, stacked end-to-end. With multiple rotor and stator sections, the motor can produce more torque without the need to increase the frame size. Only the length of the motor increases. (Note that a few manufacturers also produce quad-stack stepper motors, as shown below.)

However in double- and triple-stack (and quad-stack) stepper motor designs, torque falls off faster as speed increases than it does in single-stack designs. This is because the added rotor and stator sections also increase the motor’s inductance. And higher inductance means the electrical time constant of the motor — the amount of time it takes the current in the windings to reach 63 percent of its maximum value — is also increased. When a stepper motor operates at high speeds, a high electrical time constant means there isn’t enough time for the current (and, therefore, torque) to reach its maximum value at each motor step, resulting in a torque drop-off as speed increases.

Another way to increase the torque from a stepper motor — without increasing the NEMA frame size — is to use a gearbox with the motor. The addition of a gearbox not only increases the torque delivered from the motor to the load, it can also provide better inertia matching between the motor and the load. And when connected to a gearbox, the motor can operate at higher speeds, which helps reduce or avoid resonance and oscillations.

Source: motioncontroltips

Raccomandazioni correlate
  • Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

    Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation...

    2023-09-07
    Vedi traduzione
  • Targeting military laser technology! Two major enterprises plan to establish a joint venture company

    Latest news: Rheinmetall and European Missile Group Germany plan to establish a joint venture to develop shipborne laser weapons.The cooperation between the two companies in the field of military laser technology has been ongoing for several years. In 2022 and 2023, under the framework of the High Energy Marine Laser Demonstration Working Group (ARGE), the jointly developed laser was successfully ...

    01-15
    Vedi traduzione
  • Shanghai Optics and Machinery Institute has made progress in the research of new terahertz sources based on Yb lasers

    Recently, the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in generating intense field terahertz waves based on Yb laser pumped organic crystals. The relevant research results were published in Applied Physics Letters under the title "Efficient strong field THz generation from DSTMS crys...

    2024-04-09
    Vedi traduzione
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    Vedi traduzione
  • Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

    Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intens...

    2023-09-16
    Vedi traduzione