Italiano

Harvard University and University of Vienna invented tunable laser chips

793
2025-07-16 14:42:00
Vedi traduzione

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.
Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safety inspections of gas pipelines. Yet laser technology faces many tradeoffs – for example, lasers that emit across a wide range of wavelengths sacrifice the accuracy of each wavelength. They can also depend on complicated and expensive designs because they commonly require moving parts.

Artist’s illustration of the new tunable ring laser.

The Harvard and Vienna developers new device could “one day replace many types of tunable lasers in a smaller, more cost-effective package.”

The associated research has been published in Optica. It was co-led by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS, and Prof. Benedikt Schwarz at TU Wien.

‘More commercially relevant wavelengths’

The researchers have initially demonstrated a laser that emits light in the mid-infrared wavelength range because that is where quantum cascade lasers, upon which their architecture is based, typically emit. “The versatility of this new platform means that similar lasers can be fabricated at more commercially relevant wavelengths, such as for telecommunications applications, for medical diagnostics, or for any laser that emits in the visible spectrum of light,” said Capasso, who co-invented the quantum cascade laser in 1994.

The new laser consists of multiple tiny ring-shaped lasers, each a slightly different size, and all connected to the same waveguide. Each ring emits light of a different wavelength, and by adjusting electric current input, the laser can smoothly tune between different wavelengths. The clever and compact design ensures the laser emits only one wavelength at a time, remains stable even in harsh environments, and can be easily scaled. The rings function either one at a time or all together to make a stronger beam.

“By adjusting the size of the ring, we can effectively target any line we want, and any lasing frequency we want,” said co-lead author Theodore Letsou, an MIT graduate student and research fellow in Capasso’s lab at Harvard. “All the light from every single laser gets coupled through the same waveguide and is formed into the same beam. This is quite powerful, because we can extend the tuning range of typical semiconductor lasers, and we can target individual wavelengths using a different ring radius.”

“What’s really nice about our laser is the simplicity of fabrication,” added co-lead author Johannes Fuchsberger, a graduate student at TU Wien, where the team fabricated the devices using the cleanroom facilities permanently provided by the school’s Center for Micro and Nanostructures. “We have no mechanically movable parts and an easy fabrication scheme that results in a small footprint.”

The new ring laser could possibly replace current technologies for different types of tunable semiconductor lasers that each have strengths and drawbacks depending on the application. For example, distributed feedback lasers make smooth and accurate beams and are therefore used in telecommunications fiber to send optical signals long distances, but their tuning range is narrow.

External cavity lasers, on the other hand, have broader tuning ranges but more complex designs and moving parts, which makes their laser lines tend to skip around. These are commonly used in gas sensors that test for leaks in pipelines, because they can detect gases like methane and carbon dioxide which absorb light at distinct wavelengths.

Source: optics.org

Raccomandazioni correlate
  • IPG introduces a new dual-beam laser with the highest single-mode core power

    From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding spe...

    2023-09-14
    Vedi traduzione
  • Tower and Fortsense have announced the launch of their highly advanced 3D imager for LiDAR

    Recently, Gaota Semiconductor announced the successful development of an advanced 3D imager based on dToF technology for LiDAR applications. The newly developed product FL6031 is based on Tower's 65nm Stacked BSI CIS platform and has pixel level hybrid bonding function. It is the first in a series of products aimed at meeting the needs of numerous deep sensing applications in the automotive, consu...

    2023-09-14
    Vedi traduzione
  • Chinese researchers enhance perovskite lasers by suppressing energy loss

    Limiting Auger recombination enables “record” quasi-continuous wave laser output.For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that...

    08-25
    Vedi traduzione
  • Hanbit Laser Layout in Southeast Asia's Mid to Low End Market

    Hanbit Laser, a South Korean laser equipment manufacturer, has recently completed an important step in its strategic layout for the Southeast Asian market. Recently, the company officially opened a laser application center in Hanoi, Vietnam, and entered the local mid to low price equipment market by integrating laser technology and automation solutions. This is a substantial progress in implementi...

    02-26
    Vedi traduzione
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    Vedi traduzione