Italiano

New Method - Observing how materials emit polarized light

59
2025-07-04 10:46:38
Vedi traduzione

Many materials emit light in ways that encode information in its polarization. According to researchers at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, polarization is key for future technologies, from quantum computers to secure communication and holographic displays.
Among such phenomena is a form known as circularly polarized luminescence (CPL), a special type of light emission produced by chiral materials, in which light waves spiral either left or right as they travel.

 



Standard CPL techniques are often slow, narrowly focused, or unable to pick up faint signals, says EPFL, especially when studying advanced materials with fleeting or subtle polarization effects. These limitations have slowed the quest to fully understand how chiral materials interact with light.

Now, a team led by Professor Sascha Feldmann at EPFL’s Laboratory for Energy Materials has developed a high-sensitivity, broadband, time-resolved spectroscopy technique that captures the complete set of polarization states (the so-called "Stokes vector"). The work, including shared blueprints, is described in Nature.

Wide window

The new technique does this across a wide spectral window (400–900 nm), and at time intervals ranging from just nanoseconds up to several milliseconds, all with a noise floor as low as one ten-thousandth the intensity of the polarized light being emitted by a material. The new technique also captures linear and circular polarization signals at the same time, which helps identify and correct for polarization artifacts that often disrupt other methods.

The EPFL team says it designed the instrument “with straightforward, off-the-shelf components, making it widely adoptable.” They are sharing the full optical schematics and a compendium of “non-obvious” error sources to open the field up for others.
They used an electronically-gated camera and polarization optics to record the full Stokes vector in real time, tracking changes in light emission from different types of molecules that feature both strong and weak polarized luminescence. By recording the complete polarization fingerprint, the new set up can uncover details that other approaches miss, says EPFL.

 



The new approach successfully captured polarization changes in materials that had never been tracked in such detail before. It reproduced benchmark results for well-studied molecules, and it revealed previously unseen dynamics in organic emitters and complex systems where light emission happens on both fast and slow timescales.

With its combination of high sensitivity, wide spectral coverage, and nanosecond time resolution, the technique is said to open an unprecedented window onto the realm of excited-state polarization dynamics and symmetry-breaking. The team has also made their blueprints and automation algorithms public in an effort to democratize the field and help speed up discoveries worldwide.

Source: optics.org

Raccomandazioni correlate
  • Mitsubishi Electric has launched a light source module for high-capacity laser optical communication in outer space

    On August 22nd, Mitsubishi Electric Corporation, a multinational electronics and electrical equipment manufacturing company, announced that it had successfully demonstrated laser optical frequency control using a new light source module, which is a key component of a high-capacity laser optical communication network to be deployed in outer space.It is reported that this module can generate 1.5 &mu...

    2023-08-24
    Vedi traduzione
  • Luxiner launches modular laser processing solution Multiscan HE

    Recently, Luxiner, the leading brand in the field of laser technology in the UK, announced the launch of MultiSCAN ®  The latest members of CO2 laser systems - Multiscan HE 10i, 15i, and 25i. These new systems are presented in a completely independent form, integrating power, PC, and software, providing users with comprehensive solutions.The Multiscan HE 10i, 15i, and 25i not only inherit the indu...

    2024-06-07
    Vedi traduzione
  • Researchers have made breakthrough discoveries in the field of nanophotonics

    Researchers have made breakthrough discoveries in the field of nanophotonics. They have successfully developed a locked mode ultrafast laser using lithium niobium, a material known for its excellent optical properties. This breakthrough opens up new possibilities for revolutionary applications, including telecommunications, data storage, and ultra fast imaging.A mode-locked laser is a type of lase...

    2023-11-20
    Vedi traduzione
  • Tianjin University's Photoacoustic Remote Sensing Microscopy Technology Breakthrough New Heights

    Recently, Professor Tian Zhen's team from Tianjin University has made a breakthrough in the field of photoacoustic remote sensing microscopy technology and successfully developed a new type of non-destructive testing method. This technology uses Kaplin high-power femtosecond laser as the key light source, further optimizing the solution to the internal flaw detection limitations of inverted chips,...

    2024-04-16
    Vedi traduzione
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    Vedi traduzione