Italiano

BWT 969nm semiconductor pump source

571
2025-05-09 11:31:01
Vedi traduzione

Semiconductor laser pump sources, especially those with a wavelength of 969nm, have become the preferred choice for high-power/high peak energy disc lasers due to their reduced quantum losses and heat generation.

The 3000W 969nm fiber coupled semiconductor laser system launched by BWT uses 800 μ m NA0.22 fiber to output flat top optical energy distribution, combining lightweight and excellent optical performance, and can be widely used in scientific research and other fields.

In terms of design, BWT combines six 500 watt modules to achieve a 3000W power output scheme (as shown in the figure below). By adopting CTC chip integration technology, the system has the characteristics of miniaturization and lightweight, with a total size of only 80 * 482 * 521mm ³, a weight of only 24kg, and equipped with QBH output.


Figure 1. Fiber Bundle Output 3000W@969nm Lockwave


The system can achieve an output power of 300-3000W within the current range of 5-30A, with a center wavelength of 969nm and a side mode suppression ratio of over 25dB; When the power reaches 3000W, the edge mode suppression ratio is about 40dB, and the full width at half maximum of the spectrum is less than 0.3nm. To achieve a near flat top distribution of fiber output energy, BWT uses special techniques to improve energy uniformity, and the measured data shows a super Gaussian order greater than 4 (as shown in the figure below).


Figure 2. Power of 3000W semiconductor laser system

 


Figure 3. 3000W 969nm semiconductor laser system


At present, BWT has a full range of semiconductor laser products (380nm-1940nm, 2mW-6kW), with laser pump sources covering the full power range of 10W to 1000W in the 8XXnm and 9XXnm series. In the future, we will launch higher power semiconductor laser systems to meet the demand of disc lasers for amplifying and outputting higher pulse energy in ultrafast lasers.

Source: BWT

Raccomandazioni correlate
  • The research team establishes synthetic dimensional dynamics to manipulate light

    In the field of physics, the synthetic dimension has become one of the forefront of active research, providing a way to explore phenomena in high-dimensional space, surpassing our traditional 3D geometric space. This concept has attracted great attention, especially in the field of topological photonics, as it has the potential to unlock rich physics that traditional dimensions cannot reach.Resear...

    2024-03-20
    Vedi traduzione
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    2024-06-28
    Vedi traduzione
  • Nanchang University has made progress in intelligent photoacoustic tomography imaging

    Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that enables precise imaging of biological tissue structures at different spatial scales. It has been widely used in various fields, including brain imaging, cancer detection, and cardiovascular disease diagnosis. However, due to limitations in data acquisition conditions, photoacoustic tomography systems typically can only...

    2024-08-13
    Vedi traduzione
  • Old brand laser manufacturers win major orders in the nuclear industry

    Recently, Laser Photonics Corporation (LPC) claims to have successfully secured an order from ES Fox Limited to provide them with the CleanTech 500-CTHD laser cleaning system.ES Fox Limited, founded in 1934, is recognized as a leader in the industrial manufacturing and construction industry in Canada. Its nuclear service department has invested millions of hours to support the nuclear power indust...

    2024-05-28
    Vedi traduzione
  • Deep Photon Network Platform, Empowering Any Functional Photon Integrated Circuit

    The widespread application in the fields of optical communication, computing, and sensing continues to drive the growing demand for high-performance integrated photonic components. Recently, Ali Najjar Amiri of Kochi University in Türkiye and other scholars proposed a highly scalable and highly flexible deep photonic network platform, which is used to realize optical systems on chip with arbi...

    2024-03-11
    Vedi traduzione