Italiano

Intel installs the first EUV manufacturing tool that can emit lasers hotter than the sun

559
2024-04-22 16:00:17
Vedi traduzione

Chip giant Intel announced that it has completed the assembly work of the world's first commercial high numerical aperture (NA) extreme ultraviolet lithography (EUV) scanner. This device greatly improves the resolution and feature scaling of next-generation chips by changing the optical design used to project printed images onto silicon wafers.

This lithography equipment weighing 150 tons has been assembled at the Intel D1X research factory in Hillsborough and is currently undergoing calibration steps. It enables chip manufacturers to engrave tiny patterns on silicon wafers, thereby manufacturing microcircuits for computer chips.
The Dutch company ASML is the only company in the world to manufacture this type of tool. Intel's model is one of only two models in the world.

The workers in Intel factories are known for their white attire, and they usually wear bunny suits from head to toe. The rabbit suit here refers to a "cleanroom set", which is a standard equipment for cleanroom workers and can prevent particles on the skin, hair, or clothing from damaging the microscopic features on computer chips.

At Intel's large research factory in Hillsboro, another accessory has recently become commonplace: a safety helmet.
The workers at Intel factory spent several months assembling a huge manufacturing tool weighing 150 metric tons. It is the most advanced lithography tool currently available, one of only two in the world, manufactured by the Dutch company ASML.

This massive device is known as the High Numerical Aperture (NA) EUV manufacturing tool. It is the size of a double decker bus in a factory, but what you see is only a part of the whole. This tool can actually extend above the ceiling and below the floor.

From there, EUV (Extreme Ultraviolet) tools emit lasers at tiny tin droplets, emitting 50000 times per second, with an energy burst 40 times hotter than the surface of the sun. The resulting collision produces a shadow of ultraviolet radiation, which does not occur naturally on Earth.

This very large production tool produces very small things: light with a wavelength of only a few billionths of a meter. These tiny light waves enable semiconductor manufacturers to imprint smaller resolutions on computer chips than ever before, paving the way for generations of more powerful computers.

"We are innovating at the forefront of physics," said Jeff Birdsall, Vice President of Intel who helped lead the company's technology development.
As is well known, Intel is very secretive about its manufacturing technology. This time it showcased its new toy in a sales event. This month, the company invited journalists - even BBC news crews - to its Hillsborough factory to promote Intel's transformation story to the public and potential customers, showcasing a manufacturing tool that its competitors have not yet possessed.

Intel's technology has deviated significantly in the past decade, partly due to the slow adoption of the first batch of EUV tools in its factories. This allows Asian competitors to stay ahead, while Intel needs to pay a high price to catch up.

Intel has now committed to investing $100 billion in building advanced factories around the world. This includes $36 billion for upgrading the Hillsboro complex factory, where Intel is developing a new generation of chip technology, known as the new process node.

The 10000 engineers and technicians at Intel's Oregon research plant are putting this money into work, and the new lithography tools are at the core of this work. The cost of each EUV machine is close to $400 million, and Intel will need many of these machines to equip its Oregon factory and other factories distributed around the world.

Intel still has a few months of work to do on the new lithography tool, testing its functionality and learning how to use it. The first batch of commercial chips using more advanced technology will not be launched for at least two years.

Intel is betting heavily on smaller circuits, betting that customers and investors will be patient when its engineers refine the next generation of technology. Intel stated that it may take two to three years to start using this machine to produce chips. They will be called "14A" chips, hailed as one of the most advanced chips in the world, and are expected to be used in fields such as artificial intelligence.

Source: OFweek Laser Network

Raccomandazioni correlate
  • Mazak will showcase high-speed fiber lasers on Tube 2024

    Yamazaki Mazak designed the FT-150 fiber laser tube processing machine for high-speed cutting of small and medium-sized diameter pipes, for use in Tube 2024. The machine tool will be controlled by a new type of pipe cutting CNC, which will be exhibited for the first time in Europe.Tube 2024 will be held from April 15th to 19th in Dusseldorf, Germany. Mazak will be exhibited at booth C17 in Hall 5....

    2024-03-16
    Vedi traduzione
  • E-22 uncertainty optical frequency divider

    The time/frequency unit is the most accurate among the seven basic units, so many measurement studies that pursue ultra-high accuracy and sensitivity will be transformed into frequency measurements to achieve higher measurement accuracy and sensitivity. For example, by measuring the relative changes in the ratio of different atomic transition frequencies, ultralight dark matter can be detected or ...

    2024-02-27
    Vedi traduzione
  • Laser chip manufacturer Shijia Photon will make a profit of 65 million yuan in 2024

    Shijia Photon disclosed its 2024 annual performance forecast on the evening of January 17th, expecting to achieve a revenue of 1.074 billion yuan in 2024, a year-on-year increase of 42.36%; Net profit attributable to the parent company was 65 million yuan, with a loss of 47.55 million yuan in the same period last year; Deducting non net profit is expected to be 48.1 million yuan, with a loss of 66...

    01-21
    Vedi traduzione
  • Application of Airborne Lidar Calibration Board in Various Fields

    With the rapid development of technology, airborne LiDAR technology has become one of the key technologies in modern surveying, remote sensing, navigation and other fields. As an important component of this technology, the airborne LiDAR calibration board plays a crucial role in ensuring the accuracy and stability of the radar system. This article will explore the application and importance of air...

    2024-04-08
    Vedi traduzione
  • Ireland's first biological Brillouin microscope at Trinity College Dublin

    A project at Trinity College Dublin is now hosting Ireland's first BioBrillouin microscope instrument, applying Brillouin spectroscopy to life sciences and medicine.This should in particular enhance the College's research into cellular and tissue mechanics for the study of inflammation, cancer, and developmental biology.Brillouin microscopy offers a route to optical investigation of a biological s...

    07-14
    Vedi traduzione